Spaces:
Sleeping
Sleeping
| import gradio | |
| import torch | |
| from transformers import AutoModelWithLMHead, AutoTokenizer | |
| # Load model directly | |
| loaded_tokenizer = AutoTokenizer.from_pretrained("raghavdw/finedtuned_gpt2_medQA_model") | |
| loaded_model = AutoModelWithLMHead.from_pretrained("raghavdw/finedtuned_gpt2_medQA_model") | |
| # Function for response generation | |
| def generate_query_response(prompt, max_length=200): | |
| model = loaded_model | |
| tokenizer = loaded_tokenizer | |
| input_ids = tokenizer.encode(prompt, return_tensors="pt") | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| model.to(device) | |
| input_ids = input_ids.to(device) | |
| attention_mask = torch.ones_like(input_ids) | |
| pad_token_id = tokenizer.eos_token_id | |
| output = model.generate(input_ids, | |
| max_length=max_length, | |
| num_return_sequences=1, | |
| attention_mask=attention_mask, | |
| pad_token_id=pad_token_id) | |
| response = tokenizer.decode(output[0], skip_special_tokens=True) | |
| return response | |
| # Gradio elements | |
| # Input from user | |
| in_prompt = gradio.Textbox(label="Enter your prompt") | |
| # Output response | |
| in_max_length = 200 | |
| # Output response | |
| out_response = gradio.Textbox(label="Generated Response") | |
| # Gradio | |
| iface = gradio.Interface(fn=generate_query_response, | |
| inputs=[in_prompt], | |
| outputs=out_response, | |
| title = "Medical Summary", | |
| description = "using fine-tune medQA gpt-2 model") | |
| # YOUR CODE HERE to launch the interface | |
| iface.launch(share = True) | |