Spaces:
Paused
Paused
| import gradio as gr | |
| import requests | |
| API_URL = "https://rahul7star-FramePack-F1-DiffusionForce.hf.space/api/generate/" | |
| HEALTH_API_URL = "https://rahul7star-FramePack-F1-DiffusionForce.hf.space/api/healthcheck" | |
| def check_health(): | |
| try: | |
| print("incoming app") | |
| response = requests.get(HEALTH_API_URL) | |
| if response.status_code == 200: | |
| return f"✅ API Rahul is healthy: {response.json()}" | |
| else: | |
| return f"❌ API Rahul Error: {response.status_code} - {response.text}" | |
| except Exception as e: | |
| return f"❌ Exception Rahul occurred: {str(e)}" | |
| def call_framepack_api( | |
| input_image, | |
| prompt, | |
| t2v, | |
| n_prompt, | |
| seed, | |
| total_second_length, | |
| latent_window_size, | |
| steps, | |
| cfg, | |
| gs, | |
| rs, | |
| gpu_memory_preservation, | |
| use_teacache, | |
| mp4_crf, | |
| lora_file, | |
| lora_multiplier, | |
| fp8_optimization, | |
| ): | |
| files = {} | |
| data = { | |
| "prompt": prompt, | |
| "t2v": str(t2v).lower(), | |
| "n_prompt": n_prompt, | |
| "seed": int(seed), | |
| "total_second_length": float(total_second_length), | |
| "latent_window_size": int(latent_window_size), | |
| "steps": int(steps), | |
| "cfg": float(cfg), | |
| "gs": float(gs), | |
| "rs": float(rs), | |
| "gpu_memory_preservation": float(gpu_memory_preservation), | |
| "use_teacache": str(use_teacache).lower(), | |
| "mp4_crf": int(mp4_crf), | |
| "lora_multiplier": float(lora_multiplier), | |
| "fp8_optimization": str(fp8_optimization).lower(), | |
| } | |
| if input_image: | |
| files["input_image"] = ("input.png", input_image, "image/png") | |
| if lora_file: | |
| files["lora_file"] = (lora_file.name, lora_file, "application/octet-stream") | |
| # Prepare log string for display | |
| log_str = f"Calling API at: {API_URL}\n" | |
| log_str += f"Payload data:\n{data}\n" | |
| log_str += f"Files sent: {list(files.keys())}\n" | |
| try: | |
| response = requests.post(API_URL, data=data, files=files) | |
| log_str += f"Response status: {response.status_code}\n" | |
| if response.status_code == 200: | |
| result = response.json() | |
| video_url = result.get("video_url") | |
| preview_url = result.get("preview_image_url") | |
| log_str += f"Response JSON:\n{result}\n" | |
| return video_url, preview_url, log_str | |
| else: | |
| log_str += f"API Error: {response.status_code} - {response.text}\n" | |
| return None, None, log_str | |
| except Exception as e: | |
| log_str += f"Exception: {str(e)}\n" | |
| return None, None, log_str | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# FramePack API Client with Full Options") | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.File(label="Input Image (PNG/JPG) — optional", file_types=[".png", ".jpg", ".jpeg"]) | |
| lora_file = gr.File(label="LoRA File (optional)", file_types=[".safetensors", ".pt", ".bin"]) | |
| prompt = gr.Textbox(label="Prompt") | |
| n_prompt = gr.Textbox(label="Negative Prompt (optional)", value="") | |
| t2v = gr.Checkbox(label="Text-to-Video", value=True) | |
| seed = gr.Number(label="Seed", value=31337, precision=0) | |
| total_second_length = gr.Slider(label="Video Length (seconds)", minimum=1, maximum=120, value=5, step=0.1) | |
| latent_window_size = gr.Slider(label="Latent Window Size", minimum=1, maximum=33, value=9, step=1) | |
| steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1) | |
| cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01) | |
| gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=10.0, step=0.01) | |
| rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01) | |
| gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB)", minimum=6, maximum=128, value=6, step=0.1) | |
| use_teacache = gr.Checkbox(label="Use TeaCache", value=True) | |
| mp4_crf = gr.Slider(label="MP4 Compression", minimum=0, maximum=100, value=16, step=1) | |
| lora_multiplier = gr.Slider(label="LoRA Multiplier", minimum=0.0, maximum=1.0, value=0.8, step=0.1) | |
| fp8_optimization = gr.Checkbox(label="FP8 Optimization", value=False) | |
| generate_btn = gr.Button("Generate") | |
| health_btn = gr.Button("Check API Health") | |
| health_output = gr.Textbox(label="Health Check Result") | |
| health_btn.click(fn=check_health, inputs=[], outputs=[health_output]) | |
| with gr.Column(): | |
| video_output = gr.Video(label="Generated Video", autoplay=True) | |
| preview_output = gr.Image(label="Preview Image") | |
| api_response = gr.Textbox(label="API JSON Response", lines=10) | |
| generate_btn.click( | |
| fn=call_framepack_api, | |
| inputs=[ | |
| input_image, | |
| prompt, | |
| t2v, | |
| n_prompt, | |
| seed, | |
| total_second_length, | |
| latent_window_size, | |
| steps, | |
| cfg, | |
| gs, | |
| rs, | |
| gpu_memory_preservation, | |
| use_teacache, | |
| mp4_crf, | |
| lora_file, | |
| lora_multiplier, | |
| fp8_optimization, | |
| ], | |
| outputs=[video_output, preview_output, api_response], | |
| ) | |
| demo.launch() | |