Spaces:
Paused
Paused
| import os | |
| os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9"') | |
| import spaces | |
| import os | |
| import gradio as gr | |
| import torch | |
| from diffusers import WanPipeline, AutoencoderKLWan | |
| from diffusers.utils import export_to_video | |
| # Model setup | |
| dtype = torch.bfloat16 | |
| device = "cuda" | |
| model_id = "FastDM/Wan2.2-T2V-A14B-Merge-Lightning-V1.0-Diffusers" | |
| print("Loading model... this may take a while.") | |
| vae = AutoencoderKLWan.from_pretrained( | |
| model_id, subfolder="vae", torch_dtype=torch.float32 | |
| ) | |
| pipe = WanPipeline.from_pretrained( | |
| model_id, vae=vae, torch_dtype=dtype | |
| ).to(device) | |
| # Default values | |
| DEFAULT_PROMPT = "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage." | |
| DEFAULT_NEGATIVE = "bad quality, blurry, distorted, extra limbs, watermark, text" | |
| def generate_video(prompt, negative_prompt, height, width, num_frames, steps, guidance): | |
| video = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| height=height, | |
| width=width, | |
| num_frames=num_frames, | |
| guidance_scale=guidance, | |
| num_inference_steps=steps, | |
| ).frames[0] | |
| output_path = "t2v_out.mp4" | |
| export_to_video(video, output_path, fps=16) | |
| return output_path | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# 🎬 Wan2.2 Text-to-Video Demo") | |
| gr.Markdown("Generate short AI videos from text prompts.") | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt = gr.Textbox(label="Prompt", value=DEFAULT_PROMPT, lines=3) | |
| negative_prompt = gr.Textbox(label="Negative Prompt", value=DEFAULT_NEGATIVE, lines=2) | |
| height = gr.Slider(256, 1280, value=720, step=64, label="Height") | |
| width = gr.Slider(256, 1280, value=1280, step=64, label="Width") | |
| num_frames = gr.Slider(16, 128, value=81, step=1, label="Number of Frames") | |
| steps = gr.Slider(1, 20, value=4, step=1, label="Inference Steps") | |
| guidance = gr.Slider(0.1, 10.0, value=1.0, step=0.1, label="Guidance Scale") | |
| generate_btn = gr.Button("🚀 Generate Video") | |
| with gr.Column(): | |
| video_output = gr.Video(label="Generated Video") | |
| generate_btn.click( | |
| fn=generate_video, | |
| inputs=[prompt, negative_prompt, height, width, num_frames, steps, guidance], | |
| outputs=[video_output], | |
| ) | |
| demo.launch() | |