debug: peft
Browse files- app.py +46 -148
- requirements.txt +1 -4
app.py
CHANGED
@@ -1,30 +1,10 @@
|
|
1 |
-
import sys
|
2 |
-
import subprocess
|
3 |
-
import importlib.util
|
4 |
-
|
5 |
-
# Check if required packages are installed
|
6 |
-
required_packages = ["ftfy", "einops", "imageio", "peft", "bitsandbytes"]
|
7 |
-
for package in required_packages:
|
8 |
-
if importlib.util.find_spec(package) is None:
|
9 |
-
print(f"Installing missing dependency: {package}")
|
10 |
-
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
|
11 |
-
|
12 |
-
import os
|
13 |
import torch
|
14 |
import gradio as gr
|
15 |
import spaces
|
16 |
from diffusers.utils import export_to_video
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
from diffusers import AutoencoderKLWan, WanPipeline
|
21 |
-
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
|
22 |
-
from diffusers.schedulers.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
|
23 |
-
import peft
|
24 |
-
print("Successfully imported all required modules")
|
25 |
-
except ImportError as e:
|
26 |
-
print(f"Error importing diffusers components: {e}")
|
27 |
-
subprocess.check_call([sys.executable, "-m", "pip", "install", "--upgrade", "diffusers", "peft"])
|
28 |
|
29 |
# Define model options
|
30 |
MODEL_OPTIONS = {
|
@@ -38,21 +18,7 @@ SCHEDULER_OPTIONS = {
|
|
38 |
"FlowMatchEulerDiscreteScheduler": FlowMatchEulerDiscreteScheduler
|
39 |
}
|
40 |
|
41 |
-
|
42 |
-
"""
|
43 |
-
Alternative approach to loading the model with LoRA weights
|
44 |
-
without using the built-in load_lora_weights method.
|
45 |
-
"""
|
46 |
-
print(f"Loading model: {model_id}")
|
47 |
-
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
|
48 |
-
pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
|
49 |
-
|
50 |
-
# Print PEFT version information
|
51 |
-
print(f"PEFT version: {peft.__version__}")
|
52 |
-
|
53 |
-
return pipe
|
54 |
-
|
55 |
-
@spaces.GPU(duration=300) # Set a 5-minute duration for the GPU access
|
56 |
def generate_video(
|
57 |
model_choice,
|
58 |
prompt,
|
@@ -68,119 +34,52 @@ def generate_video(
|
|
68 |
num_inference_steps,
|
69 |
output_fps
|
70 |
):
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
except Exception as e:
|
114 |
-
print(f"Error loading LoRA weights: {str(e)}")
|
115 |
-
|
116 |
-
# Try an alternative approach
|
117 |
-
try:
|
118 |
-
print("Attempting alternative approach for LoRA integration...")
|
119 |
-
# Let's try the direct adapter approach
|
120 |
-
from peft import PeftModel
|
121 |
-
from huggingface_hub import hf_hub_download
|
122 |
-
|
123 |
-
# Make a temporary directory for the LoRA weights
|
124 |
-
lora_dir = "lora_weights"
|
125 |
-
os.makedirs(lora_dir, exist_ok=True)
|
126 |
-
|
127 |
-
# Download the LoRA weights
|
128 |
-
print(f"Downloading LoRA weights from {lora_id}")
|
129 |
-
lora_file = hf_hub_download(lora_id, filename="pytorch_lora_weights.safetensors")
|
130 |
-
|
131 |
-
print(f"LoRA file downloaded: {lora_file}")
|
132 |
-
print("Applying LoRA weights manually...")
|
133 |
-
|
134 |
-
# Instead of trying to directly integrate LoRA, we'll just proceed without it for now
|
135 |
-
# but with a warning message
|
136 |
-
print("WARNING: Could not load LoRA weights. Proceeding without LoRA adaptation.")
|
137 |
-
except Exception as nested_e:
|
138 |
-
print(f"Alternative LoRA approach also failed: {str(nested_e)}")
|
139 |
-
print("Proceeding without LoRA weights")
|
140 |
-
|
141 |
-
# Generate the video
|
142 |
-
print(f"Generating video with prompt: {prompt[:50]}...")
|
143 |
-
print(f"Parameters: height={height}, width={width}, num_frames={num_frames}, "
|
144 |
-
f"guidance_scale={guidance_scale}, steps={num_inference_steps}")
|
145 |
-
|
146 |
-
# Prepare generation parameters
|
147 |
-
generation_params = {
|
148 |
-
"prompt": prompt,
|
149 |
-
"negative_prompt": negative_prompt,
|
150 |
-
"height": height,
|
151 |
-
"width": width,
|
152 |
-
"num_frames": num_frames,
|
153 |
-
"guidance_scale": guidance_scale,
|
154 |
-
"num_inference_steps": num_inference_steps
|
155 |
-
}
|
156 |
-
|
157 |
-
# Add cross attention scale if LoRA was successfully loaded
|
158 |
-
if lora_id and lora_id.strip():
|
159 |
-
generation_params["cross_attention_kwargs"] = {"scale": lora_scale}
|
160 |
-
print(f"Using LoRA scale: {lora_scale}")
|
161 |
-
|
162 |
-
# Generate the video
|
163 |
-
print("Starting generation...")
|
164 |
-
output = pipe(**generation_params).frames[0]
|
165 |
-
print(f"Generation complete, frames shape: {output.shape if hasattr(output, 'shape') else 'unknown'}")
|
166 |
-
|
167 |
-
# Export to video
|
168 |
-
temp_file = "output.mp4"
|
169 |
-
print(f"Exporting video with fps={output_fps}")
|
170 |
-
export_to_video(output, temp_file, fps=output_fps)
|
171 |
-
print(f"Video exported to {temp_file}")
|
172 |
-
|
173 |
-
return temp_file
|
174 |
-
except Exception as e:
|
175 |
-
import traceback
|
176 |
-
error_trace = traceback.format_exc()
|
177 |
-
print(f"Error generating video: {str(e)}\n{error_trace}")
|
178 |
-
return f"Error generating video: {str(e)}\n{error_trace}"
|
179 |
|
180 |
# Create the Gradio interface
|
181 |
with gr.Blocks() as demo:
|
182 |
gr.Markdown("# Wan Video Generation with ZeroGPU")
|
183 |
-
gr.Markdown("Generate high-quality videos using the Wan model with optional LoRA adaptations.")
|
184 |
|
185 |
with gr.Row():
|
186 |
with gr.Column(scale=1):
|
@@ -309,7 +208,6 @@ with gr.Blocks() as demo:
|
|
309 |
- For larger resolution videos, try higher values of flow shift (7.0-12.0)
|
310 |
- Number of frames should be of the form 4k+1 (e.g., 49, 81, 65)
|
311 |
- The model is memory intensive, so adjust resolution according to available VRAM
|
312 |
-
- LoRA ID should be a Hugging Face repository containing safetensors files
|
313 |
""")
|
314 |
|
315 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
import spaces
|
4 |
from diffusers.utils import export_to_video
|
5 |
+
from diffusers import AutoencoderKLWan, WanPipeline
|
6 |
+
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
|
7 |
+
from diffusers.schedulers.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# Define model options
|
10 |
MODEL_OPTIONS = {
|
|
|
18 |
"FlowMatchEulerDiscreteScheduler": FlowMatchEulerDiscreteScheduler
|
19 |
}
|
20 |
|
21 |
+
@spaces.GPU(duration=300)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
def generate_video(
|
23 |
model_choice,
|
24 |
prompt,
|
|
|
34 |
num_inference_steps,
|
35 |
output_fps
|
36 |
):
|
37 |
+
# Get model ID from selection
|
38 |
+
model_id = MODEL_OPTIONS[model_choice]
|
39 |
+
|
40 |
+
# Load model
|
41 |
+
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
|
42 |
+
pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
|
43 |
+
|
44 |
+
# Set scheduler
|
45 |
+
if scheduler_type == "UniPCMultistepScheduler":
|
46 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(
|
47 |
+
pipe.scheduler.config,
|
48 |
+
flow_shift=flow_shift
|
49 |
+
)
|
50 |
+
else:
|
51 |
+
pipe.scheduler = FlowMatchEulerDiscreteScheduler(shift=flow_shift)
|
52 |
+
|
53 |
+
# Move to GPU
|
54 |
+
pipe.to("cuda")
|
55 |
+
|
56 |
+
# Load LoRA weights if provided
|
57 |
+
if lora_id and lora_id.strip():
|
58 |
+
pipe.load_lora_weights(lora_id)
|
59 |
+
|
60 |
+
# Enable CPU offload for low VRAM
|
61 |
+
pipe.enable_model_cpu_offload()
|
62 |
+
|
63 |
+
# Generate video
|
64 |
+
output = pipe(
|
65 |
+
prompt=prompt,
|
66 |
+
negative_prompt=negative_prompt,
|
67 |
+
height=height,
|
68 |
+
width=width,
|
69 |
+
num_frames=num_frames,
|
70 |
+
guidance_scale=guidance_scale,
|
71 |
+
num_inference_steps=num_inference_steps
|
72 |
+
).frames[0]
|
73 |
+
|
74 |
+
# Export to video
|
75 |
+
temp_file = "output.mp4"
|
76 |
+
export_to_video(output, temp_file, fps=output_fps)
|
77 |
+
|
78 |
+
return temp_file
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
# Create the Gradio interface
|
81 |
with gr.Blocks() as demo:
|
82 |
gr.Markdown("# Wan Video Generation with ZeroGPU")
|
|
|
83 |
|
84 |
with gr.Row():
|
85 |
with gr.Column(scale=1):
|
|
|
208 |
- For larger resolution videos, try higher values of flow shift (7.0-12.0)
|
209 |
- Number of frames should be of the form 4k+1 (e.g., 49, 81, 65)
|
210 |
- The model is memory intensive, so adjust resolution according to available VRAM
|
|
|
211 |
""")
|
212 |
|
213 |
demo.launch()
|
requirements.txt
CHANGED
@@ -7,7 +7,4 @@ ftfy>=6.1.3
|
|
7 |
einops>=0.7.0
|
8 |
imageio>=2.31.6
|
9 |
imageio-ffmpeg>=0.4.9
|
10 |
-
|
11 |
-
omegaconf>=2.3.0
|
12 |
-
peft==0.7.1
|
13 |
-
bitsandbytes>=0.41.0
|
|
|
7 |
einops>=0.7.0
|
8 |
imageio>=2.31.6
|
9 |
imageio-ffmpeg>=0.4.9
|
10 |
+
peft==0.7.1
|
|
|
|
|
|