feat: test 2nd pass
Browse files
app.py
CHANGED
@@ -5,6 +5,8 @@ from diffusers.utils import export_to_video
|
|
5 |
from diffusers import AutoencoderKLWan, WanPipeline
|
6 |
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
|
7 |
from diffusers.schedulers.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
|
|
|
|
|
8 |
|
9 |
# Define model options
|
10 |
MODEL_OPTIONS = {
|
@@ -33,7 +35,14 @@ def generate_video(
|
|
33 |
num_frames,
|
34 |
guidance_scale,
|
35 |
num_inference_steps,
|
36 |
-
output_fps
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
):
|
38 |
# Get model ID from selection
|
39 |
model_id = MODEL_OPTIONS[model_choice]
|
@@ -76,35 +85,123 @@ def generate_video(
|
|
76 |
# Enable CPU offload for low VRAM
|
77 |
pipe.enable_model_cpu_offload()
|
78 |
|
79 |
-
#
|
80 |
-
|
|
|
|
|
|
|
|
|
81 |
prompt=prompt,
|
82 |
negative_prompt=negative_prompt,
|
83 |
height=height,
|
84 |
width=width,
|
85 |
num_frames=num_frames,
|
86 |
guidance_scale=guidance_scale,
|
87 |
-
num_inference_steps=num_inference_steps
|
88 |
-
|
|
|
|
|
89 |
|
90 |
-
#
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
# Create the Gradio interface
|
97 |
with gr.Blocks() as demo:
|
98 |
gr.HTML("""
|
99 |
<p align="center">
|
100 |
<svg version="1.1" viewBox="0 0 1200 295" xmlns="http://www.w3.org/2000/svg" xmlns:v="https://vecta.io/nano" width="400">
|
101 |
-
|
102 |
</svg>
|
103 |
<p align="center">
|
104 |
💻 <a href="https://www.markury.dev/"><b>Website</b></a>    |    🤗 <a href="https://huggingface.co/markury"><b>Hugging Face</b></a>    |    💿 <a href="https://thebulge.xyz"><b>Discord</b></a>
|
105 |
</p>
|
106 |
""")
|
107 |
-
gr.Markdown("# Wan 2.1 T2V 1.3B with LoRA")
|
108 |
|
109 |
with gr.Row():
|
110 |
with gr.Column(scale=1):
|
@@ -209,13 +306,92 @@ with gr.Blocks() as demo:
|
|
209 |
step=1
|
210 |
)
|
211 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
generate_btn = gr.Button("Generate Video")
|
213 |
|
214 |
with gr.Column(scale=1):
|
215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
generate_btn.click(
|
218 |
-
fn=
|
219 |
inputs=[
|
220 |
model_choice,
|
221 |
prompt,
|
@@ -230,9 +406,20 @@ with gr.Blocks() as demo:
|
|
230 |
num_frames,
|
231 |
guidance_scale,
|
232 |
num_inference_steps,
|
233 |
-
output_fps
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
],
|
235 |
-
outputs=
|
|
|
|
|
|
|
|
|
236 |
)
|
237 |
|
238 |
gr.Markdown("""
|
@@ -242,6 +429,12 @@ with gr.Blocks() as demo:
|
|
242 |
- Number of frames should be of the form 4k+1 (e.g., 33, 81)
|
243 |
- Stick to lower frame counts. Even at 480p, an 81 frame sequence at 30 steps will nearly time out the request in this space.
|
244 |
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
## Using LoRAs with multiple safetensors files:
|
246 |
If you encounter an error stating "more than one weights file", you need to specify the exact weight file name in the "LoRA Weight Name" field.
|
247 |
You can find this by browsing the repository on Hugging Face and looking for the safetensors files (common names include: adapter_model.safetensors, pytorch_lora_weights.safetensors).
|
|
|
5 |
from diffusers import AutoencoderKLWan, WanPipeline
|
6 |
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
|
7 |
from diffusers.schedulers.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
|
8 |
+
import os
|
9 |
+
import tempfile
|
10 |
|
11 |
# Define model options
|
12 |
MODEL_OPTIONS = {
|
|
|
35 |
num_frames,
|
36 |
guidance_scale,
|
37 |
num_inference_steps,
|
38 |
+
output_fps,
|
39 |
+
# Second pass parameters
|
40 |
+
enable_second_pass,
|
41 |
+
second_pass_scale,
|
42 |
+
second_pass_denoise,
|
43 |
+
second_pass_flow_shift,
|
44 |
+
second_pass_cfg,
|
45 |
+
show_both_outputs
|
46 |
):
|
47 |
# Get model ID from selection
|
48 |
model_id = MODEL_OPTIONS[model_choice]
|
|
|
85 |
# Enable CPU offload for low VRAM
|
86 |
pipe.enable_model_cpu_offload()
|
87 |
|
88 |
+
# Keep track of output files for return
|
89 |
+
output_files = []
|
90 |
+
|
91 |
+
# First pass - generate base video
|
92 |
+
print("Running first pass...")
|
93 |
+
first_pass = pipe(
|
94 |
prompt=prompt,
|
95 |
negative_prompt=negative_prompt,
|
96 |
height=height,
|
97 |
width=width,
|
98 |
num_frames=num_frames,
|
99 |
guidance_scale=guidance_scale,
|
100 |
+
num_inference_steps=num_inference_steps,
|
101 |
+
output_type="latent" if enable_second_pass else "pt", # Only return latents if doing second pass
|
102 |
+
return_dict=True
|
103 |
+
)
|
104 |
|
105 |
+
# Get the latents from the first pass output
|
106 |
+
latents = first_pass.frames[0]
|
107 |
+
|
108 |
+
# If we're not doing a second pass or need to display both outputs, decode the first pass
|
109 |
+
if not enable_second_pass or (enable_second_pass and show_both_outputs):
|
110 |
+
# Decode the latents to frames with the VAE (only needed if we requested latents)
|
111 |
+
if enable_second_pass:
|
112 |
+
print("Decoding first pass latents...")
|
113 |
+
with torch.no_grad():
|
114 |
+
first_pass_frames = pipe.vae.decode(latents / pipe.vae.config.scaling_factor).sample
|
115 |
+
else:
|
116 |
+
first_pass_frames = latents
|
117 |
+
|
118 |
+
# Export first pass to video
|
119 |
+
first_pass_file = "output_first_pass.mp4"
|
120 |
+
export_to_video(first_pass_frames, first_pass_file, fps=output_fps)
|
121 |
+
output_files.append(first_pass_file)
|
122 |
+
|
123 |
+
# Second pass - upscale and refine if enabled
|
124 |
+
second_pass_file = None
|
125 |
+
if enable_second_pass:
|
126 |
+
print("Running second pass with scale factor:", second_pass_scale)
|
127 |
+
|
128 |
+
# Resize latents for second pass (upscale)
|
129 |
+
new_height = int(height * second_pass_scale)
|
130 |
+
new_width = int(width * second_pass_scale)
|
131 |
+
|
132 |
+
# Ensure dimensions are multiples of 8
|
133 |
+
new_height = (new_height // 8) * 8
|
134 |
+
new_width = (new_width // 8) * 8
|
135 |
+
|
136 |
+
print(f"Upscaling latents from {height}x{width} to {new_height}x{new_width}")
|
137 |
+
|
138 |
+
# Upscale latents using interpolate
|
139 |
+
upscaled_latents = torch.nn.functional.interpolate(
|
140 |
+
latents,
|
141 |
+
size=(num_frames, new_height // 8, new_width // 8), # VAE downsamples by factor of 8
|
142 |
+
mode="trilinear",
|
143 |
+
align_corners=False
|
144 |
+
)
|
145 |
+
|
146 |
+
# Update scheduler for second pass if using different flow shift
|
147 |
+
if scheduler_type == "UniPCMultistepScheduler":
|
148 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(
|
149 |
+
pipe.scheduler.config,
|
150 |
+
flow_shift=second_pass_flow_shift
|
151 |
+
)
|
152 |
+
else:
|
153 |
+
pipe.scheduler = FlowMatchEulerDiscreteScheduler(shift=second_pass_flow_shift)
|
154 |
+
|
155 |
+
# Calculate noise level for partial denoising
|
156 |
+
# For noise scheduler, 0 means no noise (final step) and 1 means full noise (first step)
|
157 |
+
# So we convert our denoise strength to a timestep in the schedule
|
158 |
+
start_step = int(second_pass_denoise * num_inference_steps)
|
159 |
+
|
160 |
+
# Run second pass with the upscaled latents and partial denoising
|
161 |
+
print(f"Denoising from step {start_step} of {num_inference_steps} (denoise strength: {second_pass_denoise})")
|
162 |
+
|
163 |
+
# Use the second pass CFG value
|
164 |
+
second_pass_guidance = second_pass_cfg if second_pass_cfg > 0 else guidance_scale
|
165 |
+
|
166 |
+
second_pass = pipe(
|
167 |
+
prompt=prompt,
|
168 |
+
negative_prompt=negative_prompt,
|
169 |
+
height=new_height,
|
170 |
+
width=new_width,
|
171 |
+
num_frames=num_frames,
|
172 |
+
guidance_scale=second_pass_guidance,
|
173 |
+
num_inference_steps=num_inference_steps,
|
174 |
+
latents=upscaled_latents, # Use the upscaled latents
|
175 |
+
strength=second_pass_denoise, # Partial denoising
|
176 |
+
output_type="pt",
|
177 |
+
return_dict=True
|
178 |
+
)
|
179 |
+
|
180 |
+
# Export second pass to video
|
181 |
+
second_pass_file = "output_second_pass.mp4"
|
182 |
+
export_to_video(second_pass.frames[0], second_pass_file, fps=output_fps)
|
183 |
+
output_files.append(second_pass_file)
|
184 |
|
185 |
+
# Return the appropriate video output(s)
|
186 |
+
if enable_second_pass and not show_both_outputs:
|
187 |
+
return second_pass_file
|
188 |
+
elif enable_second_pass and show_both_outputs:
|
189 |
+
return [first_pass_file, second_pass_file]
|
190 |
+
else:
|
191 |
+
return first_pass_file
|
192 |
|
193 |
# Create the Gradio interface
|
194 |
with gr.Blocks() as demo:
|
195 |
gr.HTML("""
|
196 |
<p align="center">
|
197 |
<svg version="1.1" viewBox="0 0 1200 295" xmlns="http://www.w3.org/2000/svg" xmlns:v="https://vecta.io/nano" width="400">
|
198 |
+
...
|
199 |
</svg>
|
200 |
<p align="center">
|
201 |
💻 <a href="https://www.markury.dev/"><b>Website</b></a>    |    🤗 <a href="https://huggingface.co/markury"><b>Hugging Face</b></a>    |    💿 <a href="https://thebulge.xyz"><b>Discord</b></a>
|
202 |
</p>
|
203 |
""")
|
204 |
+
gr.Markdown("# Wan 2.1 T2V 1.3B with LoRA and Second Pass Refinement")
|
205 |
|
206 |
with gr.Row():
|
207 |
with gr.Column(scale=1):
|
|
|
306 |
step=1
|
307 |
)
|
308 |
|
309 |
+
# Add Second Pass options
|
310 |
+
with gr.Accordion("Second Pass Refinement (HiresFix)", open=False):
|
311 |
+
enable_second_pass = gr.Checkbox(
|
312 |
+
label="Enable Second Pass Refinement",
|
313 |
+
value=False,
|
314 |
+
info="Scale up and refine the video with a second denoising pass"
|
315 |
+
)
|
316 |
+
|
317 |
+
with gr.Row():
|
318 |
+
second_pass_scale = gr.Slider(
|
319 |
+
label="Scale Factor",
|
320 |
+
minimum=1.0,
|
321 |
+
maximum=2.0,
|
322 |
+
value=1.25,
|
323 |
+
step=0.05,
|
324 |
+
info="How much to upscale the video for refinement"
|
325 |
+
)
|
326 |
+
second_pass_denoise = gr.Slider(
|
327 |
+
label="Denoise Strength",
|
328 |
+
minimum=0.1,
|
329 |
+
maximum=1.0,
|
330 |
+
value=0.6,
|
331 |
+
step=0.05,
|
332 |
+
info="Lower values preserve more of the original details"
|
333 |
+
)
|
334 |
+
|
335 |
+
with gr.Row():
|
336 |
+
second_pass_flow_shift = gr.Slider(
|
337 |
+
label="Second Pass Flow Shift",
|
338 |
+
minimum=1.0,
|
339 |
+
maximum=12.0,
|
340 |
+
value=3.0,
|
341 |
+
step=0.5,
|
342 |
+
info="Flow shift value for the second pass (optional)"
|
343 |
+
)
|
344 |
+
second_pass_cfg = gr.Slider(
|
345 |
+
label="Second Pass CFG",
|
346 |
+
minimum=0.0,
|
347 |
+
maximum=15.0,
|
348 |
+
value=0.0,
|
349 |
+
step=0.5,
|
350 |
+
info="Set to 0 to use the same value as first pass"
|
351 |
+
)
|
352 |
+
|
353 |
+
show_both_outputs = gr.Checkbox(
|
354 |
+
label="Show Both Outputs",
|
355 |
+
value=False,
|
356 |
+
info="Display both original and refined videos"
|
357 |
+
)
|
358 |
+
|
359 |
generate_btn = gr.Button("Generate Video")
|
360 |
|
361 |
with gr.Column(scale=1):
|
362 |
+
# Updated output to handle multiple videos if both outputs are selected
|
363 |
+
with gr.Group():
|
364 |
+
output_video = gr.Video(label="Generated Video")
|
365 |
+
second_output_video = gr.Video(label="Second Pass Video", visible=False)
|
366 |
+
|
367 |
+
# Show/hide second video based on checkbox
|
368 |
+
def update_second_video_visibility(enable_pass, show_both):
|
369 |
+
return {"visible": enable_pass and show_both}
|
370 |
+
|
371 |
+
enable_second_pass.change(
|
372 |
+
fn=update_second_video_visibility,
|
373 |
+
inputs=[enable_second_pass, show_both_outputs],
|
374 |
+
outputs=[second_output_video]
|
375 |
+
)
|
376 |
+
|
377 |
+
show_both_outputs.change(
|
378 |
+
fn=update_second_video_visibility,
|
379 |
+
inputs=[enable_second_pass, show_both_outputs],
|
380 |
+
outputs=[second_output_video]
|
381 |
+
)
|
382 |
|
383 |
+
# Updated function to handle the second pass and multiple outputs
|
384 |
+
def process_generation(*args):
|
385 |
+
result = generate_video(*args)
|
386 |
+
if isinstance(result, list) and len(result) > 1:
|
387 |
+
return [result[0], result[1], {"visible": True}]
|
388 |
+
elif isinstance(result, list) and len(result) == 1:
|
389 |
+
return [result[0], None, {"visible": False}]
|
390 |
+
else:
|
391 |
+
return [result, None, {"visible": False}]
|
392 |
+
|
393 |
generate_btn.click(
|
394 |
+
fn=process_generation,
|
395 |
inputs=[
|
396 |
model_choice,
|
397 |
prompt,
|
|
|
406 |
num_frames,
|
407 |
guidance_scale,
|
408 |
num_inference_steps,
|
409 |
+
output_fps,
|
410 |
+
# Second pass parameters
|
411 |
+
enable_second_pass,
|
412 |
+
second_pass_scale,
|
413 |
+
second_pass_denoise,
|
414 |
+
second_pass_flow_shift,
|
415 |
+
second_pass_cfg,
|
416 |
+
show_both_outputs
|
417 |
],
|
418 |
+
outputs=[
|
419 |
+
output_video,
|
420 |
+
second_output_video,
|
421 |
+
second_output_video # Update visibility
|
422 |
+
]
|
423 |
)
|
424 |
|
425 |
gr.Markdown("""
|
|
|
429 |
- Number of frames should be of the form 4k+1 (e.g., 33, 81)
|
430 |
- Stick to lower frame counts. Even at 480p, an 81 frame sequence at 30 steps will nearly time out the request in this space.
|
431 |
|
432 |
+
## Second Pass Refinement Tips:
|
433 |
+
- The second pass (similar to HiresFix) can enhance details by upscaling and refining the video
|
434 |
+
- Start with a scale factor around 1.25 and denoise strength of 0.6
|
435 |
+
- Lower denoise values preserve more of the original video structure
|
436 |
+
- The second pass will increase generation time substantially - use with caution!
|
437 |
+
|
438 |
## Using LoRAs with multiple safetensors files:
|
439 |
If you encounter an error stating "more than one weights file", you need to specify the exact weight file name in the "LoRA Weight Name" field.
|
440 |
You can find this by browsing the repository on Hugging Face and looking for the safetensors files (common names include: adapter_model.safetensors, pytorch_lora_weights.safetensors).
|