test: ui
Browse files- app.py +228 -4
- requirements.txt +7 -0
app.py
CHANGED
|
@@ -1,7 +1,231 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
import gradio as gr
|
| 3 |
+
import spaces
|
| 4 |
+
from diffusers.utils import export_to_video
|
| 5 |
+
from diffusers import AutoencoderKLWan, WanPipeline
|
| 6 |
+
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
|
| 7 |
+
from diffusers.schedulers.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
|
| 8 |
|
| 9 |
+
# Define model options
|
| 10 |
+
MODEL_OPTIONS = {
|
| 11 |
+
"Wan2.1-T2V-1.3B": "Wan-AI/Wan2.1-T2V-1.3B-Diffusers",
|
| 12 |
+
"Wan2.1-T2V-14B": "Wan-AI/Wan2.1-T2V-14B-Diffusers"
|
| 13 |
+
}
|
| 14 |
|
| 15 |
+
# Define scheduler options
|
| 16 |
+
SCHEDULER_OPTIONS = {
|
| 17 |
+
"UniPCMultistepScheduler": UniPCMultistepScheduler,
|
| 18 |
+
"FlowMatchEulerDiscreteScheduler": FlowMatchEulerDiscreteScheduler
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
@spaces.GPU(duration=300) # Set a 5-minute duration for the GPU access
|
| 22 |
+
def generate_video(
|
| 23 |
+
model_choice,
|
| 24 |
+
prompt,
|
| 25 |
+
negative_prompt,
|
| 26 |
+
lora_id,
|
| 27 |
+
lora_scale,
|
| 28 |
+
scheduler_type,
|
| 29 |
+
flow_shift,
|
| 30 |
+
height,
|
| 31 |
+
width,
|
| 32 |
+
num_frames,
|
| 33 |
+
guidance_scale,
|
| 34 |
+
num_inference_steps,
|
| 35 |
+
output_fps
|
| 36 |
+
):
|
| 37 |
+
"""Generate a video using the Wan model and provided parameters"""
|
| 38 |
+
try:
|
| 39 |
+
# Get model ID from selection
|
| 40 |
+
model_id = MODEL_OPTIONS[model_choice]
|
| 41 |
+
|
| 42 |
+
# Load the model components
|
| 43 |
+
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
|
| 44 |
+
pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
|
| 45 |
+
|
| 46 |
+
# Set the scheduler
|
| 47 |
+
scheduler_class = SCHEDULER_OPTIONS[scheduler_type]
|
| 48 |
+
|
| 49 |
+
if scheduler_type == "UniPCMultistepScheduler":
|
| 50 |
+
pipe.scheduler = scheduler_class.from_config(
|
| 51 |
+
pipe.scheduler.config,
|
| 52 |
+
prediction_type="flow_prediction",
|
| 53 |
+
use_flow_sigmas=True,
|
| 54 |
+
flow_shift=flow_shift
|
| 55 |
+
)
|
| 56 |
+
else:
|
| 57 |
+
pipe.scheduler = scheduler_class(shift=flow_shift)
|
| 58 |
+
|
| 59 |
+
# Move to GPU
|
| 60 |
+
pipe.to("cuda")
|
| 61 |
+
|
| 62 |
+
# Enable CPU offload for low VRAM
|
| 63 |
+
pipe.enable_model_cpu_offload()
|
| 64 |
+
|
| 65 |
+
# Load and fuse LoRA if provided
|
| 66 |
+
if lora_id and lora_id.strip():
|
| 67 |
+
try:
|
| 68 |
+
# Load the LoRA weights
|
| 69 |
+
pipe.load_lora_weights(lora_id)
|
| 70 |
+
|
| 71 |
+
# Fuse LoRA with specified scale if available
|
| 72 |
+
if hasattr(pipe, "fuse_lora"):
|
| 73 |
+
pipe.fuse_lora(lora_scale=lora_scale)
|
| 74 |
+
except Exception as e:
|
| 75 |
+
return f"Error loading/fusing LoRA: {str(e)}"
|
| 76 |
+
|
| 77 |
+
# Generate the video
|
| 78 |
+
output = pipe(
|
| 79 |
+
prompt=prompt,
|
| 80 |
+
negative_prompt=negative_prompt,
|
| 81 |
+
height=height,
|
| 82 |
+
width=width,
|
| 83 |
+
num_frames=num_frames,
|
| 84 |
+
guidance_scale=guidance_scale,
|
| 85 |
+
num_inference_steps=num_inference_steps
|
| 86 |
+
).frames[0]
|
| 87 |
+
|
| 88 |
+
# Export to video
|
| 89 |
+
temp_file = "output.mp4"
|
| 90 |
+
export_to_video(output, temp_file, fps=output_fps)
|
| 91 |
+
|
| 92 |
+
return temp_file
|
| 93 |
+
except Exception as e:
|
| 94 |
+
return f"Error generating video: {str(e)}"
|
| 95 |
+
|
| 96 |
+
# Create the Gradio interface
|
| 97 |
+
with gr.Blocks() as demo:
|
| 98 |
+
gr.Markdown("# Wan Video Generation with ZeroGPU")
|
| 99 |
+
gr.Markdown("Generate high-quality videos using the Wan model with optional LoRA adaptations.")
|
| 100 |
+
|
| 101 |
+
with gr.Row():
|
| 102 |
+
with gr.Column(scale=1):
|
| 103 |
+
model_choice = gr.Dropdown(
|
| 104 |
+
choices=list(MODEL_OPTIONS.keys()),
|
| 105 |
+
value="Wan2.1-T2V-1.3B",
|
| 106 |
+
label="Model"
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
prompt = gr.Textbox(
|
| 110 |
+
label="Prompt",
|
| 111 |
+
value="steamboat willie style, golden era animation, an anthropomorphic cat character wearing a hat removes it and performs a courteous bow",
|
| 112 |
+
lines=3
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
negative_prompt = gr.Textbox(
|
| 116 |
+
label="Negative Prompt",
|
| 117 |
+
value="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走",
|
| 118 |
+
lines=3
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
with gr.Row():
|
| 122 |
+
lora_id = gr.Textbox(
|
| 123 |
+
label="LoRA ID (e.g., benjamin-paine/steamboat-willie-1.3b)",
|
| 124 |
+
value="benjamin-paine/steamboat-willie-1.3b"
|
| 125 |
+
)
|
| 126 |
+
lora_scale = gr.Slider(
|
| 127 |
+
label="LoRA Scale",
|
| 128 |
+
minimum=0.0,
|
| 129 |
+
maximum=1.0,
|
| 130 |
+
value=0.75,
|
| 131 |
+
step=0.05
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
with gr.Row():
|
| 135 |
+
scheduler_type = gr.Dropdown(
|
| 136 |
+
choices=list(SCHEDULER_OPTIONS.keys()),
|
| 137 |
+
value="UniPCMultistepScheduler",
|
| 138 |
+
label="Scheduler"
|
| 139 |
+
)
|
| 140 |
+
flow_shift = gr.Slider(
|
| 141 |
+
label="Flow Shift",
|
| 142 |
+
minimum=1.0,
|
| 143 |
+
maximum=12.0,
|
| 144 |
+
value=3.0,
|
| 145 |
+
step=0.5,
|
| 146 |
+
info="2.0-5.0 for smaller videos, 7.0-12.0 for larger videos"
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
with gr.Row():
|
| 150 |
+
height = gr.Slider(
|
| 151 |
+
label="Height",
|
| 152 |
+
minimum=256,
|
| 153 |
+
maximum=1024,
|
| 154 |
+
value=480,
|
| 155 |
+
step=32
|
| 156 |
+
)
|
| 157 |
+
width = gr.Slider(
|
| 158 |
+
label="Width",
|
| 159 |
+
minimum=256,
|
| 160 |
+
maximum=1792,
|
| 161 |
+
value=832,
|
| 162 |
+
step=32
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
with gr.Row():
|
| 166 |
+
num_frames = gr.Slider(
|
| 167 |
+
label="Number of Frames (4k+1 is recommended, e.g. 81)",
|
| 168 |
+
minimum=17,
|
| 169 |
+
maximum=129,
|
| 170 |
+
value=81,
|
| 171 |
+
step=4
|
| 172 |
+
)
|
| 173 |
+
output_fps = gr.Slider(
|
| 174 |
+
label="Output FPS",
|
| 175 |
+
minimum=8,
|
| 176 |
+
maximum=30,
|
| 177 |
+
value=16,
|
| 178 |
+
step=1
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
with gr.Row():
|
| 182 |
+
guidance_scale = gr.Slider(
|
| 183 |
+
label="Guidance Scale (CFG)",
|
| 184 |
+
minimum=1.0,
|
| 185 |
+
maximum=15.0,
|
| 186 |
+
value=5.0,
|
| 187 |
+
step=0.5
|
| 188 |
+
)
|
| 189 |
+
num_inference_steps = gr.Slider(
|
| 190 |
+
label="Inference Steps",
|
| 191 |
+
minimum=10,
|
| 192 |
+
maximum=100,
|
| 193 |
+
value=32,
|
| 194 |
+
step=1
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
generate_btn = gr.Button("Generate Video")
|
| 198 |
+
|
| 199 |
+
with gr.Column(scale=1):
|
| 200 |
+
output_video = gr.Video(label="Generated Video")
|
| 201 |
+
|
| 202 |
+
generate_btn.click(
|
| 203 |
+
fn=generate_video,
|
| 204 |
+
inputs=[
|
| 205 |
+
model_choice,
|
| 206 |
+
prompt,
|
| 207 |
+
negative_prompt,
|
| 208 |
+
lora_id,
|
| 209 |
+
lora_scale,
|
| 210 |
+
scheduler_type,
|
| 211 |
+
flow_shift,
|
| 212 |
+
height,
|
| 213 |
+
width,
|
| 214 |
+
num_frames,
|
| 215 |
+
guidance_scale,
|
| 216 |
+
num_inference_steps,
|
| 217 |
+
output_fps
|
| 218 |
+
],
|
| 219 |
+
outputs=output_video
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
gr.Markdown("""
|
| 223 |
+
## Tips for best results:
|
| 224 |
+
- For smaller resolution videos, try lower values of flow shift (2.0-5.0)
|
| 225 |
+
- For larger resolution videos, try higher values of flow shift (7.0-12.0)
|
| 226 |
+
- Number of frames should be of the form 4k+1 (e.g., 49, 81, 65)
|
| 227 |
+
- The model is memory intensive, so adjust resolution according to available VRAM
|
| 228 |
+
- LoRA ID should be a Hugging Face repository containing safetensors files
|
| 229 |
+
""")
|
| 230 |
+
|
| 231 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
git+https://github.com/huggingface/diffusers.git
|
| 2 |
+
transformers
|
| 3 |
+
accelerate
|
| 4 |
+
safetensors
|
| 5 |
+
torch>=2.0.1
|
| 6 |
+
gradio
|
| 7 |
+
spaces
|