test: ui
Browse files- app.py +228 -4
- requirements.txt +7 -0
app.py
CHANGED
@@ -1,7 +1,231 @@
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
import gradio as gr
|
3 |
+
import spaces
|
4 |
+
from diffusers.utils import export_to_video
|
5 |
+
from diffusers import AutoencoderKLWan, WanPipeline
|
6 |
+
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
|
7 |
+
from diffusers.schedulers.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
|
8 |
|
9 |
+
# Define model options
|
10 |
+
MODEL_OPTIONS = {
|
11 |
+
"Wan2.1-T2V-1.3B": "Wan-AI/Wan2.1-T2V-1.3B-Diffusers",
|
12 |
+
"Wan2.1-T2V-14B": "Wan-AI/Wan2.1-T2V-14B-Diffusers"
|
13 |
+
}
|
14 |
|
15 |
+
# Define scheduler options
|
16 |
+
SCHEDULER_OPTIONS = {
|
17 |
+
"UniPCMultistepScheduler": UniPCMultistepScheduler,
|
18 |
+
"FlowMatchEulerDiscreteScheduler": FlowMatchEulerDiscreteScheduler
|
19 |
+
}
|
20 |
+
|
21 |
+
@spaces.GPU(duration=300) # Set a 5-minute duration for the GPU access
|
22 |
+
def generate_video(
|
23 |
+
model_choice,
|
24 |
+
prompt,
|
25 |
+
negative_prompt,
|
26 |
+
lora_id,
|
27 |
+
lora_scale,
|
28 |
+
scheduler_type,
|
29 |
+
flow_shift,
|
30 |
+
height,
|
31 |
+
width,
|
32 |
+
num_frames,
|
33 |
+
guidance_scale,
|
34 |
+
num_inference_steps,
|
35 |
+
output_fps
|
36 |
+
):
|
37 |
+
"""Generate a video using the Wan model and provided parameters"""
|
38 |
+
try:
|
39 |
+
# Get model ID from selection
|
40 |
+
model_id = MODEL_OPTIONS[model_choice]
|
41 |
+
|
42 |
+
# Load the model components
|
43 |
+
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
|
44 |
+
pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
|
45 |
+
|
46 |
+
# Set the scheduler
|
47 |
+
scheduler_class = SCHEDULER_OPTIONS[scheduler_type]
|
48 |
+
|
49 |
+
if scheduler_type == "UniPCMultistepScheduler":
|
50 |
+
pipe.scheduler = scheduler_class.from_config(
|
51 |
+
pipe.scheduler.config,
|
52 |
+
prediction_type="flow_prediction",
|
53 |
+
use_flow_sigmas=True,
|
54 |
+
flow_shift=flow_shift
|
55 |
+
)
|
56 |
+
else:
|
57 |
+
pipe.scheduler = scheduler_class(shift=flow_shift)
|
58 |
+
|
59 |
+
# Move to GPU
|
60 |
+
pipe.to("cuda")
|
61 |
+
|
62 |
+
# Enable CPU offload for low VRAM
|
63 |
+
pipe.enable_model_cpu_offload()
|
64 |
+
|
65 |
+
# Load and fuse LoRA if provided
|
66 |
+
if lora_id and lora_id.strip():
|
67 |
+
try:
|
68 |
+
# Load the LoRA weights
|
69 |
+
pipe.load_lora_weights(lora_id)
|
70 |
+
|
71 |
+
# Fuse LoRA with specified scale if available
|
72 |
+
if hasattr(pipe, "fuse_lora"):
|
73 |
+
pipe.fuse_lora(lora_scale=lora_scale)
|
74 |
+
except Exception as e:
|
75 |
+
return f"Error loading/fusing LoRA: {str(e)}"
|
76 |
+
|
77 |
+
# Generate the video
|
78 |
+
output = pipe(
|
79 |
+
prompt=prompt,
|
80 |
+
negative_prompt=negative_prompt,
|
81 |
+
height=height,
|
82 |
+
width=width,
|
83 |
+
num_frames=num_frames,
|
84 |
+
guidance_scale=guidance_scale,
|
85 |
+
num_inference_steps=num_inference_steps
|
86 |
+
).frames[0]
|
87 |
+
|
88 |
+
# Export to video
|
89 |
+
temp_file = "output.mp4"
|
90 |
+
export_to_video(output, temp_file, fps=output_fps)
|
91 |
+
|
92 |
+
return temp_file
|
93 |
+
except Exception as e:
|
94 |
+
return f"Error generating video: {str(e)}"
|
95 |
+
|
96 |
+
# Create the Gradio interface
|
97 |
+
with gr.Blocks() as demo:
|
98 |
+
gr.Markdown("# Wan Video Generation with ZeroGPU")
|
99 |
+
gr.Markdown("Generate high-quality videos using the Wan model with optional LoRA adaptations.")
|
100 |
+
|
101 |
+
with gr.Row():
|
102 |
+
with gr.Column(scale=1):
|
103 |
+
model_choice = gr.Dropdown(
|
104 |
+
choices=list(MODEL_OPTIONS.keys()),
|
105 |
+
value="Wan2.1-T2V-1.3B",
|
106 |
+
label="Model"
|
107 |
+
)
|
108 |
+
|
109 |
+
prompt = gr.Textbox(
|
110 |
+
label="Prompt",
|
111 |
+
value="steamboat willie style, golden era animation, an anthropomorphic cat character wearing a hat removes it and performs a courteous bow",
|
112 |
+
lines=3
|
113 |
+
)
|
114 |
+
|
115 |
+
negative_prompt = gr.Textbox(
|
116 |
+
label="Negative Prompt",
|
117 |
+
value="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走",
|
118 |
+
lines=3
|
119 |
+
)
|
120 |
+
|
121 |
+
with gr.Row():
|
122 |
+
lora_id = gr.Textbox(
|
123 |
+
label="LoRA ID (e.g., benjamin-paine/steamboat-willie-1.3b)",
|
124 |
+
value="benjamin-paine/steamboat-willie-1.3b"
|
125 |
+
)
|
126 |
+
lora_scale = gr.Slider(
|
127 |
+
label="LoRA Scale",
|
128 |
+
minimum=0.0,
|
129 |
+
maximum=1.0,
|
130 |
+
value=0.75,
|
131 |
+
step=0.05
|
132 |
+
)
|
133 |
+
|
134 |
+
with gr.Row():
|
135 |
+
scheduler_type = gr.Dropdown(
|
136 |
+
choices=list(SCHEDULER_OPTIONS.keys()),
|
137 |
+
value="UniPCMultistepScheduler",
|
138 |
+
label="Scheduler"
|
139 |
+
)
|
140 |
+
flow_shift = gr.Slider(
|
141 |
+
label="Flow Shift",
|
142 |
+
minimum=1.0,
|
143 |
+
maximum=12.0,
|
144 |
+
value=3.0,
|
145 |
+
step=0.5,
|
146 |
+
info="2.0-5.0 for smaller videos, 7.0-12.0 for larger videos"
|
147 |
+
)
|
148 |
+
|
149 |
+
with gr.Row():
|
150 |
+
height = gr.Slider(
|
151 |
+
label="Height",
|
152 |
+
minimum=256,
|
153 |
+
maximum=1024,
|
154 |
+
value=480,
|
155 |
+
step=32
|
156 |
+
)
|
157 |
+
width = gr.Slider(
|
158 |
+
label="Width",
|
159 |
+
minimum=256,
|
160 |
+
maximum=1792,
|
161 |
+
value=832,
|
162 |
+
step=32
|
163 |
+
)
|
164 |
+
|
165 |
+
with gr.Row():
|
166 |
+
num_frames = gr.Slider(
|
167 |
+
label="Number of Frames (4k+1 is recommended, e.g. 81)",
|
168 |
+
minimum=17,
|
169 |
+
maximum=129,
|
170 |
+
value=81,
|
171 |
+
step=4
|
172 |
+
)
|
173 |
+
output_fps = gr.Slider(
|
174 |
+
label="Output FPS",
|
175 |
+
minimum=8,
|
176 |
+
maximum=30,
|
177 |
+
value=16,
|
178 |
+
step=1
|
179 |
+
)
|
180 |
+
|
181 |
+
with gr.Row():
|
182 |
+
guidance_scale = gr.Slider(
|
183 |
+
label="Guidance Scale (CFG)",
|
184 |
+
minimum=1.0,
|
185 |
+
maximum=15.0,
|
186 |
+
value=5.0,
|
187 |
+
step=0.5
|
188 |
+
)
|
189 |
+
num_inference_steps = gr.Slider(
|
190 |
+
label="Inference Steps",
|
191 |
+
minimum=10,
|
192 |
+
maximum=100,
|
193 |
+
value=32,
|
194 |
+
step=1
|
195 |
+
)
|
196 |
+
|
197 |
+
generate_btn = gr.Button("Generate Video")
|
198 |
+
|
199 |
+
with gr.Column(scale=1):
|
200 |
+
output_video = gr.Video(label="Generated Video")
|
201 |
+
|
202 |
+
generate_btn.click(
|
203 |
+
fn=generate_video,
|
204 |
+
inputs=[
|
205 |
+
model_choice,
|
206 |
+
prompt,
|
207 |
+
negative_prompt,
|
208 |
+
lora_id,
|
209 |
+
lora_scale,
|
210 |
+
scheduler_type,
|
211 |
+
flow_shift,
|
212 |
+
height,
|
213 |
+
width,
|
214 |
+
num_frames,
|
215 |
+
guidance_scale,
|
216 |
+
num_inference_steps,
|
217 |
+
output_fps
|
218 |
+
],
|
219 |
+
outputs=output_video
|
220 |
+
)
|
221 |
+
|
222 |
+
gr.Markdown("""
|
223 |
+
## Tips for best results:
|
224 |
+
- For smaller resolution videos, try lower values of flow shift (2.0-5.0)
|
225 |
+
- For larger resolution videos, try higher values of flow shift (7.0-12.0)
|
226 |
+
- Number of frames should be of the form 4k+1 (e.g., 49, 81, 65)
|
227 |
+
- The model is memory intensive, so adjust resolution according to available VRAM
|
228 |
+
- LoRA ID should be a Hugging Face repository containing safetensors files
|
229 |
+
""")
|
230 |
+
|
231 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
git+https://github.com/huggingface/diffusers.git
|
2 |
+
transformers
|
3 |
+
accelerate
|
4 |
+
safetensors
|
5 |
+
torch>=2.0.1
|
6 |
+
gradio
|
7 |
+
spaces
|