import gradio as gr import requests import os from PIL import Image from io import BytesIO from tqdm import tqdm import time import random # Defining the repository information and the trigger word repo = "stabilityai/stable-diffusion-xl-base-1.0" trigger_word = "T shirt design, TshirtDesignAF, " # Directory to save images output_dir = "saved_designs" os.makedirs(output_dir, exist_ok=True) # Create directory if it doesn't exist def generate_images(prompt): print("Generating 10 unique images with prompt:", prompt) api_url = f"https://api-inference.huggingface.co/models/{repo}" #token = os.getenv("API_TOKEN") # Uncomment and use your Hugging Face API token headers = { #"Authorization": f"Bearer {token}" } images = [] for i in range(10): # Add a unique seed to each prompt to ensure different images unique_seed = random.randint(1000, 9999) full_prompt = f"{prompt} {trigger_word} seed_{unique_seed}" payload = { "inputs": full_prompt, "parameters": { "negative_prompt": "(worst quality, low quality, normal quality, lowres, low details, oversaturated, undersaturated, overexposed, underexposed, grayscale, bw, bad photo, bad photography, bad art:1.4), (watermark, signature, text font, username, error, logo, words, letters, digits, autograph, trademark, name:1.2), (blur, blurry, grainy), morbid, ugly, asymmetrical, mutated malformed, mutilated, poorly lit, bad shadow, draft, cropped, out of frame, cut off, censored, jpeg artifacts, out of focus, glitch, duplicate, (airbrushed, cartoon, anime, semi-realistic, cgi, render, blender, digital art, manga, amateur:1.3), (3D ,3D Game, 3D Game Scene, 3D Character:1.1), (bad hands, bad anatomy, bad body, bad face, bad teeth, bad arms, bad legs, deformities:1.3)", "num_inference_steps": 30, "scheduler": "DPMSolverMultistepScheduler" }, } error_count = 0 pbar = tqdm(total=None, desc=f"Loading model {i+1}/10") while True: print(f"Sending request to API for image {i+1}...") response = requests.post(api_url, headers=headers, json=payload) print("API response status code:", response.status_code) if response.status_code == 200: print(f"Image {i+1} generation successful!") img = Image.open(BytesIO(response.content)) images.append(img) # Save the image to the output directory img_filename = os.path.join(output_dir, f"{prompt.replace(' ', '_')}_design_{i+1}.png") img.save(img_filename) print(f"Image saved as: {img_filename}") break elif response.status_code == 503: time.sleep(1) pbar.update(1) elif response.status_code == 500 and error_count < 5: time.sleep(1) error_count += 1 else: print(f"API Error for image {i+1}: {response.status_code}") raise Exception(f"API Error: {response.status_code}") return images iface = gr.Interface( fn=generate_images, inputs=gr.Textbox(lines=2, placeholder="Type your prompt here..."), outputs=gr.Gallery(label="Generated Images", columns=5), # Display images in a grid of 5 columns title="Design by rahul7star", description="Make designs for your clothes", examples=[["Cute Panda"], ["Skull"]] ) print("Launching Gradio interface...") iface.launch()