Spaces:
Sleeping
Sleeping
Create model_train
Browse files- model_train +54 -0
model_train
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, DataCollatorForLanguageModeling, Trainer, TrainingArguments
|
2 |
+
from datasets import load_dataset
|
3 |
+
|
4 |
+
# Load the pre-trained model and tokenizer
|
5 |
+
model_name = "microsoft/DialoGPT-medium"
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
+
|
8 |
+
# Add padding token if not present
|
9 |
+
if tokenizer.pad_token is None:
|
10 |
+
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
11 |
+
|
12 |
+
# Resize model embeddings to accommodate the new padding token
|
13 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
14 |
+
model.resize_token_embeddings(len(tokenizer))
|
15 |
+
|
16 |
+
# Load your dataset
|
17 |
+
|
18 |
+
|
19 |
+
dataset = load_dataset('text', data_files={'train': '/kaggle/input/rahul7star-data1/data.txt'})
|
20 |
+
|
21 |
+
# Tokenize the dataset
|
22 |
+
def tokenize_function(examples):
|
23 |
+
return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=128)
|
24 |
+
|
25 |
+
tokenized_datasets = dataset.map(tokenize_function, batched=True, num_proc=4, remove_columns=["text"])
|
26 |
+
|
27 |
+
# Set up data collator and trainer
|
28 |
+
data_collator = DataCollatorForLanguageModeling(
|
29 |
+
tokenizer=tokenizer,
|
30 |
+
mlm=False,
|
31 |
+
)
|
32 |
+
|
33 |
+
training_args = TrainingArguments(
|
34 |
+
output_dir="./results",
|
35 |
+
overwrite_output_dir=True,
|
36 |
+
num_train_epochs=3,
|
37 |
+
per_device_train_batch_size=4,
|
38 |
+
save_steps=10_000,
|
39 |
+
save_total_limit=2,
|
40 |
+
)
|
41 |
+
|
42 |
+
trainer = Trainer(
|
43 |
+
model=model,
|
44 |
+
args=training_args,
|
45 |
+
data_collator=data_collator,
|
46 |
+
train_dataset=tokenized_datasets["train"],
|
47 |
+
)
|
48 |
+
|
49 |
+
# Train the model
|
50 |
+
trainer.train()
|
51 |
+
|
52 |
+
# Save the fine-tuned model and tokenizer
|
53 |
+
model.save_pretrained("/kaggle/working/finetuned_model")
|
54 |
+
tokenizer.save_pretrained("/kaggle/working/finetuned_tokenizer")
|