layout updated wide to centered
Browse files
app.py
CHANGED
|
@@ -1,67 +1,67 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
import utils
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
# https://github.com/serkanyasr/RAG-with-LangChain-URL-PDF/blob/main/utils.py
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
st.set_page_config(layout="
|
| 9 |
-
st.markdown("<h1 style='font-size:24px;'>RAG with LangChain & GenAI: Any url</h1>", unsafe_allow_html=True)
|
| 10 |
-
# st.title("RAG with LangChain & GenAI: Any url")
|
| 11 |
-
|
| 12 |
-
# URL text box for user input
|
| 13 |
-
url_input = st.text_input("Enter a URL to be queried:", "")
|
| 14 |
-
|
| 15 |
-
# Input text box for user input
|
| 16 |
-
user_input = st.text_input("Enter your Question below:", "")
|
| 17 |
-
|
| 18 |
-
# Display the user input
|
| 19 |
-
# st.write("You entered:", user_input)
|
| 20 |
-
# st.write("URL entered:", url_input)
|
| 21 |
-
sumbit_btn = st.button(label="Submit",key="url_btn")
|
| 22 |
-
|
| 23 |
-
if sumbit_btn:
|
| 24 |
-
with st.spinner("Processing..."):
|
| 25 |
-
st.success("Response: Answering with RAG...")
|
| 26 |
-
response = utils.rag_with_url(url_input,user_input)
|
| 27 |
-
st.markdown(response)
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
# st.title("Retrieval-Augmented Generation (RAG) with LangChain : PDF ")
|
| 37 |
-
# st.divider()
|
| 38 |
-
|
| 39 |
-
# col_input , col_rag , col_normal = st.columns([3,5,5])
|
| 40 |
-
# with col_input:
|
| 41 |
-
# selected_file = st.file_uploader("PDF File", type=["pdf"])
|
| 42 |
-
# st.divider()
|
| 43 |
-
# prompt = st.text_input("Prompt",key="pdf_prompt")
|
| 44 |
-
# st.divider()
|
| 45 |
-
# sumbit_btn = st.button(label="Submit",key="pdf_btn")
|
| 46 |
-
|
| 47 |
-
# if sumbit_btn:
|
| 48 |
-
# with col_rag:
|
| 49 |
-
# with st.spinner("Processing..."):
|
| 50 |
-
# st.success("Response: Answering with RAG...")
|
| 51 |
-
# response,relevant_documents = utils.rag_with_pdf(file_path=f"./data/{selected_file.name}",
|
| 52 |
-
# prompt=prompt)
|
| 53 |
-
# st.markdown(response)
|
| 54 |
-
# st.divider()
|
| 55 |
-
# st.info("Documents")
|
| 56 |
-
# for doc in relevant_documents:
|
| 57 |
-
# st.caption(doc.page_content)
|
| 58 |
-
# st.markdown(f"Source: {doc.metadata}")
|
| 59 |
-
# st.divider()
|
| 60 |
-
|
| 61 |
-
# with col_normal:
|
| 62 |
-
# with st.spinner("Processing..."):
|
| 63 |
-
# st.info("Response: Answering without RAG...")
|
| 64 |
-
# response = utils.ask_gemini(prompt)
|
| 65 |
-
# st.markdown(response)
|
| 66 |
-
# st.divider()
|
| 67 |
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import utils
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
# https://github.com/serkanyasr/RAG-with-LangChain-URL-PDF/blob/main/utils.py
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
st.set_page_config(layout="centered")
|
| 9 |
+
st.markdown("<h1 style='font-size:24px;'>RAG with LangChain & GenAI: Any url</h1>", unsafe_allow_html=True)
|
| 10 |
+
# st.title("RAG with LangChain & GenAI: Any url")
|
| 11 |
+
|
| 12 |
+
# URL text box for user input
|
| 13 |
+
url_input = st.text_input("Enter a URL to be queried:", "")
|
| 14 |
+
|
| 15 |
+
# Input text box for user input
|
| 16 |
+
user_input = st.text_input("Enter your Question below:", "")
|
| 17 |
+
|
| 18 |
+
# Display the user input
|
| 19 |
+
# st.write("You entered:", user_input)
|
| 20 |
+
# st.write("URL entered:", url_input)
|
| 21 |
+
sumbit_btn = st.button(label="Submit",key="url_btn")
|
| 22 |
+
|
| 23 |
+
if sumbit_btn:
|
| 24 |
+
with st.spinner("Processing..."):
|
| 25 |
+
st.success("Response: Answering with RAG...")
|
| 26 |
+
response = utils.rag_with_url(url_input,user_input)
|
| 27 |
+
st.markdown(response)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
# st.title("Retrieval-Augmented Generation (RAG) with LangChain : PDF ")
|
| 37 |
+
# st.divider()
|
| 38 |
+
|
| 39 |
+
# col_input , col_rag , col_normal = st.columns([3,5,5])
|
| 40 |
+
# with col_input:
|
| 41 |
+
# selected_file = st.file_uploader("PDF File", type=["pdf"])
|
| 42 |
+
# st.divider()
|
| 43 |
+
# prompt = st.text_input("Prompt",key="pdf_prompt")
|
| 44 |
+
# st.divider()
|
| 45 |
+
# sumbit_btn = st.button(label="Submit",key="pdf_btn")
|
| 46 |
+
|
| 47 |
+
# if sumbit_btn:
|
| 48 |
+
# with col_rag:
|
| 49 |
+
# with st.spinner("Processing..."):
|
| 50 |
+
# st.success("Response: Answering with RAG...")
|
| 51 |
+
# response,relevant_documents = utils.rag_with_pdf(file_path=f"./data/{selected_file.name}",
|
| 52 |
+
# prompt=prompt)
|
| 53 |
+
# st.markdown(response)
|
| 54 |
+
# st.divider()
|
| 55 |
+
# st.info("Documents")
|
| 56 |
+
# for doc in relevant_documents:
|
| 57 |
+
# st.caption(doc.page_content)
|
| 58 |
+
# st.markdown(f"Source: {doc.metadata}")
|
| 59 |
+
# st.divider()
|
| 60 |
+
|
| 61 |
+
# with col_normal:
|
| 62 |
+
# with st.spinner("Processing..."):
|
| 63 |
+
# st.info("Response: Answering without RAG...")
|
| 64 |
+
# response = utils.ask_gemini(prompt)
|
| 65 |
+
# st.markdown(response)
|
| 66 |
+
# st.divider()
|
| 67 |
|