Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torchaudio
|
4 |
+
from transformers import AutoFeatureExtractor, AutoModelForAudioClassification
|
5 |
+
|
6 |
+
# মডেল লোড করো
|
7 |
+
model_name = "rakib730/finetuned-gtzan"
|
8 |
+
extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
9 |
+
model = AutoModelForAudioClassification.from_pretrained(model_name)
|
10 |
+
|
11 |
+
# মডেলকে eval মোডে নাও
|
12 |
+
model.eval()
|
13 |
+
|
14 |
+
# অডিও ক্লাসিফিকেশন ফাংশন
|
15 |
+
def classify_music(audio):
|
16 |
+
# audio: (numpy array, sample_rate)
|
17 |
+
waveform, sample_rate = audio
|
18 |
+
# মডেল ট্রেনিংয়ে ব্যবহৃত sample rate ঠিক করো
|
19 |
+
if sample_rate != 16000:
|
20 |
+
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
|
21 |
+
waveform = resampler(torch.tensor(waveform))
|
22 |
+
|
23 |
+
inputs = extractor(waveform.squeeze().numpy(), sampling_rate=16000, return_tensors="pt")
|
24 |
+
|
25 |
+
with torch.no_grad():
|
26 |
+
logits = model(**inputs).logits
|
27 |
+
predicted_class_id = torch.argmax(logits, dim=1).item()
|
28 |
+
predicted_label = model.config.id2label[predicted_class_id]
|
29 |
+
|
30 |
+
return predicted_label
|
31 |
+
|
32 |
+
# Gradio UI
|
33 |
+
gr.Interface(
|
34 |
+
fn=classify_music,
|
35 |
+
inputs=gr.Audio(type="numpy", label="Upload a Music Clip (WAV/MP3)"),
|
36 |
+
outputs=gr.Textbox(label="Predicted Genre"),
|
37 |
+
title="🎵 Music Genre Classifier",
|
38 |
+
description="Upload a short music clip and get the predicted genre using a fine-tuned GTZAN model.",
|
39 |
+
live=False
|
40 |
+
).launch()
|