import gradio as gr import argilla as rg import os from datasets import load_dataset dataset = load_dataset("dvilasuero/banking_app", split="train").shuffle() # You can find your Space URL behind the Embed this space button # Change it rg.init( api_url="https://ravi259-sml-argilla.hf.space", api_key="admin.apikey" ) banking_ds = load_dataset("argilla/banking_sentiment_setfit", split="train") # Argilla expects labels in the annotation column # We include labels for demo purposes banking_ds = banking_ds.rename_column("label", "annotation") # Build argilla dataset from datasets argilla_ds = rg.read_datasets(banking_ds, task="TextClassification") # Create dataset rg.log(argilla_ds, "bankingapp_sentiment") def greet(name): return "Hello " + name + "!!" iface = gr.Interface(fn=greet, inputs="text", outputs="text") iface.launch(share=True)