Spaces:
Runtime error
Runtime error
| import os | |
| import tempfile | |
| import traceback | |
| from pathlib import Path | |
| import gradio as gr | |
| import spaces # required for ZeroGPU | |
| # ---- Your model libs (ensure these are available in the repo or pip) ---- | |
| from stepaudio2 import StepAudio2 | |
| from token2wav import Token2wav | |
| # ------------------------- constants ------------------------- | |
| MODEL_PATH = "Step-Audio-2-mini" | |
| PROMPT_WAV = "assets/default_female.wav" | |
| CACHE_DIR = "/tmp/stepaudio2" | |
| # Ensure Gradio uses a writable temp dir on Spaces | |
| os.environ["GRADIO_TEMP_DIR"] = CACHE_DIR | |
| Path(CACHE_DIR).mkdir(parents=True, exist_ok=True) | |
| # ------------------------- helpers ------------------------- | |
| def save_tmp_audio(audio_bytes: bytes, cache_dir: str) -> str: | |
| Path(cache_dir).mkdir(parents=True, exist_ok=True) | |
| with tempfile.NamedTemporaryFile(dir=cache_dir, delete=False, suffix=".wav") as f: | |
| f.write(audio_bytes) | |
| return f.name | |
| def add_message(chatbot, history, mic, text): | |
| if not mic and not text: | |
| return chatbot, history, "Input is empty" | |
| if text: | |
| chatbot.append({"role": "user", "content": text}) | |
| history.append({"role": "human", "content": text}) | |
| elif mic and Path(mic).exists(): | |
| chatbot.append({"role": "user", "content": {"path": mic}}) | |
| history.append({"role": "human", "content": [{"type": "audio", "audio": mic}]}) | |
| return chatbot, history, None | |
| def reset_state(system_prompt): | |
| return [], [{"role": "system", "content": system_prompt}] | |
| # ------------------------- globals ------------------------- | |
| AUDIO_MODEL = StepAudio2(MODEL_PATH) # load on CPU | |
| TOKEN2WAV = Token2wav(f"{MODEL_PATH}/token2wav") # load on CPU | |
| # GPU only during this call; no-ops outside ZeroGPU | |
| def gpu_predict(chatbot, history): | |
| global AUDIO_MODEL, TOKEN2WAV | |
| try: | |
| # Move to CUDA only when GPU is attached | |
| try: | |
| if hasattr(AUDIO_MODEL, "to"): | |
| AUDIO_MODEL.to("cuda") | |
| if hasattr(TOKEN2WAV, "to"): | |
| TOKEN2WAV.to("cuda") | |
| except Exception: | |
| pass | |
| history.append({"role": "assistant", "content": [{"type": "text", "text": "<tts_start>"}], "eot": False}) | |
| tokens, text, audio_tokens = AUDIO_MODEL( | |
| history, | |
| max_new_tokens=4096, | |
| temperature=0.7, | |
| repetition_penalty=1.05, | |
| do_sample=True, | |
| ) | |
| audio_bytes = TOKEN2WAV(audio_tokens, PROMPT_WAV) | |
| audio_path = save_tmp_audio(audio_bytes, CACHE_DIR) | |
| chatbot.append({"role": "assistant", "content": {"path": audio_path}}) | |
| history[-1]["content"].append({"type": "token", "token": tokens}) | |
| history[-1]["eot"] = True | |
| except Exception: | |
| print(traceback.format_exc()) | |
| gr.Warning("Some error happened, please try again.") | |
| return chatbot, history | |
| def build_demo(): | |
| with gr.Blocks(delete_cache=(86400, 86400)) as demo: | |
| gr.Markdown("<center><font size=8>Step Audio 2 Demo</center>") | |
| with gr.Row(): | |
| system_prompt = gr.Textbox( | |
| label="System Prompt", | |
| value=( | |
| "你的名字叫做小跃,是由阶跃星辰公司训练出来的语音大模型。\n" | |
| "你情感细腻,观察能力强,擅长分析用户的内容,并作出善解人意的回复," | |
| "说话的过程中时刻注意用户的感受,富有同理心,提供多样的情绪价值。\n" | |
| "今天是2025年8月29日,星期五\n" | |
| "请用默认女声与用户交流。" | |
| ), | |
| lines=2, | |
| ) | |
| chatbot = gr.Chatbot(elem_id="chatbot", min_height=800, type="messages") | |
| history = gr.State([{"role": "system", "content": system_prompt.value}]) | |
| mic = gr.Audio(type="filepath", label="🎙️ Microphone input (optional)") | |
| text = gr.Textbox(placeholder="Enter message ...", label="💬 Text input") | |
| with gr.Row(): | |
| clean_btn = gr.Button("🧹 Clear History (清除历史)") | |
| regen_btn = gr.Button("🤔️ Regenerate (重试)") | |
| submit_btn = gr.Button("🚀 Submit") | |
| def on_submit(chatbot, history, mic, text): | |
| chatbot, history, error = add_message(chatbot, history, mic, text) | |
| if error: | |
| gr.Warning(error) | |
| return chatbot, history, None, None | |
| chatbot, history = gpu_predict(chatbot, history) | |
| return chatbot, history, None, None | |
| submit_btn.click( | |
| fn=on_submit, | |
| inputs=[chatbot, history, mic, text], | |
| outputs=[chatbot, history, mic, text], | |
| concurrency_limit=4, | |
| concurrency_id="gpu_queue", | |
| ) | |
| clean_btn.click( | |
| fn=reset_state, | |
| inputs=[system_prompt], | |
| outputs=[chatbot, history], | |
| ) | |
| def regenerate(chatbot, history): | |
| while chatbot and chatbot[-1]["role"] == "assistant": | |
| chatbot.pop() | |
| while history and history[-1]["role"] == "assistant": | |
| history.pop() | |
| return gpu_predict(chatbot, history) | |
| regen_btn.click( | |
| regenerate, | |
| [chatbot, history], | |
| [chatbot, history], | |
| concurrency_id="gpu_queue", | |
| ) | |
| return demo | |
| # Spaces runs this file; just build and launch with defaults (no ports/names). | |
| if __name__ == "__main__": | |
| demo = build_demo() | |
| demo.queue().launch() # no args — Spaces handles host/port | |