Spaces:
Paused
Paused
import gradio as gr | |
from gradio_webrtc import WebRTC, ReplyOnPause, AdditionalOutputs | |
import transformers | |
import numpy as np | |
from twilio.rest import Client | |
import os | |
pipe = transformers.pipeline(model='fixie-ai/ultravox-v0_4_1-llama-3_1-8b', trust_remote_code=True) | |
account_sid = os.environ.get("TWILIO_ACCOUNT_SID") | |
auth_token = os.environ.get("TWILIO_AUTH_TOKEN") | |
if account_sid and auth_token: | |
client = Client(account_sid, auth_token) | |
token = client.tokens.create() | |
rtc_configuration = { | |
"iceServers": token.ice_servers, | |
"iceTransportPolicy": "relay", | |
} | |
else: | |
rtc_configuration = None | |
def transcribe(audio: tuple[int, np.ndarray], conversation: list[dict]): | |
output = pipe({"audio": audio[1], "turns": conversation, "sampling_rate": audio[0]}, | |
max_new_tokens=512) | |
conversation.append({"role": "user", "content": output["transcription"]}) | |
conversation.append({"role": "assistant", "content": output["reply"]}) | |
yield AdditionalOutputs(conversation) | |
with gr.Blocks() as demo: | |
gr.HTML( | |
""" | |
<h1 style='text-align: center'> | |
Talk to Ultravox Llama 3.1 8b (Powered by WebRTC ⚡️) | |
</h1> | |
<p style='text-align: center'> | |
Once you grant access to your microphone, you can talk naturally to Ultravox. | |
When you stop talking, the audio will be sent for processing. | |
</p> | |
<p style='text-align: center'> | |
Each conversation is limited to 90 seconds. Once the time limit is up you can rejoin the conversation. | |
</p> | |
""" | |
) | |
transformers_convo = gr.State(value=[{ | |
"role": "system", | |
"content": "You are a friendly and helpful character. You love to answer questions for people." | |
}]) | |
with gr.Row(): | |
with gr.Column(): | |
audio = WebRTC( | |
rtc_configuration=rtc_configuration, | |
label="Stream", | |
mode="send", | |
modality="audio", | |
) | |
with gr.Column(): | |
transcript = gr.Chatbot(label="transcript", type="messages") | |
audio.stream(ReplyOnPause(transcribe), inputs=[audio, transformers_convo, transcript], outputs=[audio], time_limit=90) | |
audio.on_additional_outputs(lambda s,a: (s,a), outputs=[transformers_convo, transcript], | |
queue=False, show_progress="hidden") | |
if __name__ == "__main__": | |
demo.launch() |