import gradio as gr from gradio_webrtc import WebRTC, ReplyOnPause, AdditionalOutputs import transformers import numpy as np from twilio.rest import Client import os pipe = transformers.pipeline(model='fixie-ai/ultravox-v0_4_1-llama-3_1-8b', trust_remote_code=True) account_sid = os.environ.get("TWILIO_ACCOUNT_SID") auth_token = os.environ.get("TWILIO_AUTH_TOKEN") if account_sid and auth_token: client = Client(account_sid, auth_token) token = client.tokens.create() rtc_configuration = { "iceServers": token.ice_servers, "iceTransportPolicy": "relay", } else: rtc_configuration = None def transcribe(audio: tuple[int, np.ndarray], conversation: list[dict]): output = pipe({"audio": audio[1], "turns": conversation, "sampling_rate": audio[0]}, max_new_tokens=512) conversation.append({"role": "user", "content": output["transcription"]}) conversation.append({"role": "assistant", "content": output["reply"]}) yield AdditionalOutputs(conversation) with gr.Blocks() as demo: gr.HTML( """ <h1 style='text-align: center'> Talk to Ultravox Llama 3.1 8b (Powered by WebRTC ⚡️) </h1> <p style='text-align: center'> Once you grant access to your microphone, you can talk naturally to Ultravox. When you stop talking, the audio will be sent for processing. </p> <p style='text-align: center'> Each conversation is limited to 90 seconds. Once the time limit is up you can rejoin the conversation. </p> """ ) transformers_convo = gr.State(value=[{ "role": "system", "content": "You are a friendly and helpful character. You love to answer questions for people." }]) with gr.Row(): with gr.Column(): audio = WebRTC( rtc_configuration=rtc_configuration, label="Stream", mode="send", modality="audio", ) with gr.Column(): transcript = gr.Chatbot(label="transcript", type="messages") audio.stream(ReplyOnPause(transcribe), inputs=[audio, transformers_convo, transcript], outputs=[audio], time_limit=90) audio.on_additional_outputs(lambda s,a: (s,a), outputs=[transformers_convo, transcript], queue=False, show_progress="hidden") if __name__ == "__main__": demo.launch()