# Use Ubuntu as the base image FROM ubuntu:22.04 # Set the working directory in the container WORKDIR /app # Install system dependencies and Python RUN apt-get update && apt-get install -y \ python3 \ python3-pip \ curl \ git \ build-essential \ cmake \ ninja-build \ wget \ && rm -rf /var/lib/apt/lists/* # Set Python3 as the default RUN ln -s /usr/bin/python3 /usr/bin/python # Copy the requirements file and install dependencies COPY requirements.txt ./ RUN pip install --no-cache-dir -r requirements.txt # Install llama.cpp using CMake RUN git clone https://github.com/ggerganov/llama.cpp.git /app/llama.cpp && \ cd /app/llama.cpp && \ mkdir build && cd build && \ cmake .. -G Ninja && ninja install # Ensure llama.cpp binaries are in the system path ENV PATH="/usr/local/bin:$PATH" # Copy the Llama model into the Docker image COPY Meta-Llama-3-8B-Instruct.Q4_0.gguf /app/ # Copy the application files COPY . . # Expose the FastAPI default port EXPOSE 8000 # Start llama.cpp server, then start FastAPI CMD ["sh", "-c", "/usr/local/bin/server -m /app/Meta-Llama-3-8B-Instruct.Q4_0.gguf & sleep 5 && uvicorn main:app --host 0.0.0.0 --port 8000"]