andreamocci commited on
Commit
4ec1d3b
Β·
1 Parent(s): 0e5cde1

Import original code from Daniel Travaglia

Browse files
README.md CHANGED
@@ -1,14 +1,12 @@
1
  ---
2
- title: Donut Finetuned Sogc Trademarks 1883 2001
3
- emoji: πŸ“‰
4
- colorFrom: gray
5
- colorTo: yellow
6
  sdk: gradio
7
- sdk_version: 5.34.0
8
  app_file: app.py
9
- pinned: false
10
- license: mit
11
- short_description: ' Donut fine-tuned - Swiss trademarks'
12
  ---
13
 
14
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: Donut fine-tuned - Swiss trademarks
3
+ emoji: πŸ“š
4
+ colorFrom: purple
5
+ colorTo: indigo
6
  sdk: gradio
7
+ sdk_version: 3.29.0
8
  app_file: app.py
9
+ pinned: true
 
 
10
  ---
11
 
12
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import gradio as gr
3
+
4
+ import torch
5
+ from transformers import DonutProcessor, VisionEncoderDecoderModel
6
+
7
+ # updated
8
+ processor = DonutProcessor.from_pretrained("Travad98/donut-finetuned-sogc-trademarks-1883-2001")
9
+ model = VisionEncoderDecoderModel.from_pretrained("Travad98/donut-finetuned-sogc-trademarks-1883-2001")
10
+
11
+ device = "cuda" if torch.cuda.is_available() else "cpu"
12
+ model.to(device)
13
+
14
+ def process_document(image):
15
+ # prepare encoder inputs
16
+ pixel_values = processor(image, return_tensors="pt").pixel_values
17
+
18
+ # prepare decoder inputs
19
+ task_prompt = "<s_cord-v2>"
20
+ decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
21
+
22
+ # generate answer
23
+ outputs = model.generate(
24
+ pixel_values.to(device),
25
+ decoder_input_ids=decoder_input_ids.to(device),
26
+ max_length=model.decoder.config.max_position_embeddings,
27
+ early_stopping=True,
28
+ pad_token_id=processor.tokenizer.pad_token_id,
29
+ eos_token_id=processor.tokenizer.eos_token_id,
30
+ use_cache=True,
31
+ num_beams=1,
32
+ bad_words_ids=[[processor.tokenizer.unk_token_id]],
33
+ return_dict_in_generate=True,
34
+ )
35
+
36
+ # postprocess
37
+ sequence = processor.batch_decode(outputs.sequences)[0]
38
+ # sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
39
+ # sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
40
+
41
+ return processor.token2json(sequence)
42
+
43
+ description = "Gradio-based demo for Donut, an instance of VisionEncoderDecoderModel fine-tuned on the sogc-trademark-1883-2001 dataset. To use it, simply upload your image and click 'submit', or click one of the examples to load them. Read more at the links below."
44
+ article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2111.15664' target='_blank'>Donut: OCR-free Document Understanding Transformer</a> | <a href='https://github.com/clovaai/donut' target='_blank'>Github Repo</a></p>"
45
+
46
+ demo = gr.Interface(
47
+ fn=process_document,
48
+ inputs="image",
49
+ outputs="json",
50
+ title="Donut 🍩 for πŸ‡¨πŸ‡­ trademark registration events",
51
+ description=description,
52
+ article=article,
53
+ enable_queue=True,
54
+ examples=[["example-1.jpg"], ["example-2.jpg"], ["example-3.jpg"], ["example-4.jpg"], ["example-5.jpg"]],
55
+ cache_examples=False)
56
+
57
+ demo.launch()
example-1.jpg ADDED
example-2.jpg ADDED
example-3.jpg ADDED
example-4.jpg ADDED
example-5.jpg ADDED
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ torch
2
+ git+https://github.com/huggingface/transformers.git
3
+ sentencepiece
sha-001_1970_88__1968_d-1-11.jpg ADDED
sha-001_1983_101__30_d-1-11.jpg ADDED
sha-001_1989_107__122_d-2-7.jpg ADDED
sha-001_1994_112__95_d-0-3.jpg ADDED
sha-001_1997_115__107_d-0-1.jpg ADDED
sha-001_1998_116__2259_d-3-13.jpg ADDED