File size: 6,108 Bytes
e10ed78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32ef5e5
e10ed78
 
 
 
 
 
 
ac8ea20
1c7b682
32ef5e5
 
e10ed78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac8ea20
e10ed78
32ef5e5
4d9237e
ac8ea20
e10ed78
4d9237e
e10ed78
 
 
 
 
 
 
 
 
 
 
 
ac8ea20
e10ed78
 
ac8ea20
 
e10ed78
 
 
 
32ef5e5
 
 
 
 
 
 
e10ed78
 
 
 
 
 
 
 
 
 
 
1c7b682
 
 
 
 
32ef5e5
1c7b682
 
 
 
 
 
 
32ef5e5
1c7b682
 
 
32ef5e5
1c7b682
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32ef5e5
 
 
1c7b682
 
 
 
32ef5e5
1c7b682
32ef5e5
 
 
 
 
0b69c87
32ef5e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b69c87
32ef5e5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#

import requests
from typing import Annotated, Literal
from abc import ABC
import httpx
import ormsgpack
from pydantic import BaseModel, conint
from rag.utils import num_tokens_from_string
import json
import re
import time


class ServeReferenceAudio(BaseModel):
    audio: bytes
    text: str


class ServeTTSRequest(BaseModel):
    text: str
    chunk_length: Annotated[int, conint(ge=100, le=300, strict=True)] = 200
    # Audio format
    format: Literal["wav", "pcm", "mp3"] = "mp3"
    mp3_bitrate: Literal[64, 128, 192] = 128
    # References audios for in-context learning
    references: list[ServeReferenceAudio] = []
    # Reference id
    # For example, if you want use https://fish.audio/m/7f92f8afb8ec43bf81429cc1c9199cb1/
    # Just pass 7f92f8afb8ec43bf81429cc1c9199cb1
    reference_id: str | None = None
    # Normalize text for en & zh, this increase stability for numbers
    normalize: bool = True
    # Balance mode will reduce latency to 300ms, but may decrease stability
    latency: Literal["normal", "balanced"] = "normal"


class Base(ABC):
    def __init__(self, key, model_name, base_url):
        pass

    def tts(self, audio):
        pass

    def normalize_text(self, text):
        return re.sub(r'(\*\*|##\d+\$\$|#)', '', text)


class FishAudioTTS(Base):
    def __init__(self, key, model_name, base_url="https://api.fish.audio/v1/tts"):
        if not base_url:
            base_url = "https://api.fish.audio/v1/tts"
        key = json.loads(key)
        self.headers = {
            "api-key": key.get("fish_audio_ak"),
            "content-type": "application/msgpack",
        }
        self.ref_id = key.get("fish_audio_refid")
        self.base_url = base_url

    def tts(self, text):
        from http import HTTPStatus

        text = self.normalize_text(text)
        request = ServeTTSRequest(text=text, reference_id=self.ref_id)

        with httpx.Client() as client:
            try:
                with client.stream(
                        method="POST",
                        url=self.base_url,
                        content=ormsgpack.packb(
                            request, option=ormsgpack.OPT_SERIALIZE_PYDANTIC
                        ),
                        headers=self.headers,
                        timeout=None,
                ) as response:
                    if response.status_code == HTTPStatus.OK:
                        for chunk in response.iter_bytes():
                            yield chunk
                    else:
                        response.raise_for_status()

                yield num_tokens_from_string(text)

            except httpx.HTTPStatusError as e:
                raise RuntimeError(f"**ERROR**: {e}")


class QwenTTS(Base):
    def __init__(self, key, model_name, base_url=""):
        import dashscope

        self.model_name = model_name
        dashscope.api_key = key

    def tts(self, text):
        from dashscope.api_entities.dashscope_response import SpeechSynthesisResponse
        from dashscope.audio.tts import ResultCallback, SpeechSynthesizer, SpeechSynthesisResult
        from collections import deque

        class Callback(ResultCallback):
            def __init__(self) -> None:
                self.dque = deque()

            def _run(self):
                while True:
                    if not self.dque:
                        time.sleep(0)
                        continue
                    val = self.dque.popleft()
                    if val:
                        yield val
                    else:
                        break

            def on_open(self):
                pass

            def on_complete(self):
                self.dque.append(None)

            def on_error(self, response: SpeechSynthesisResponse):
                raise RuntimeError(str(response))

            def on_close(self):
                pass

            def on_event(self, result: SpeechSynthesisResult):
                if result.get_audio_frame() is not None:
                    self.dque.append(result.get_audio_frame())

        text = self.normalize_text(text)
        callback = Callback()
        SpeechSynthesizer.call(model=self.model_name,
                               text=text,
                               callback=callback,
                               format="mp3")
        try:
            for data in callback._run():
                yield data
            yield num_tokens_from_string(text)

        except Exception as e:
            raise RuntimeError(f"**ERROR**: {e}")


class OpenAITTS(Base):
    def __init__(self, key, model_name="tts-1", base_url="https://api.openai.com/v1"):
        if not base_url: base_url="https://api.openai.com/v1"
        self.api_key = key
        self.model_name = model_name
        self.base_url = base_url
        self.headers = {
            "Authorization": f"Bearer {self.api_key}",
            "Content-Type": "application/json"
        }

    def tts(self, text, voice="alloy"):
        text = self.normalize_text(text)
        payload = {
            "model": self.model_name,
            "voice": voice,
            "input": text
        }

        response = requests.post(f"{self.base_url}/audio/speech", headers=self.headers, json=payload, stream=True)

        if response.status_code != 200:
            raise Exception(f"**Error**: {response.status_code}, {response.text}")
        for chunk in response.iter_content():
            if chunk:
                yield chunk