File size: 5,227 Bytes
cdba7f7
 
 
 
 
 
 
 
 
 
 
 
e6acaf6
 
41c7a59
407b252
e6acaf6
cdba7f7
e6acaf6
 
cdba7f7
e6acaf6
 
 
 
 
 
 
 
 
 
 
cdba7f7
e6acaf6
 
 
 
 
 
 
 
 
 
 
 
 
51482f3
e6acaf6
 
41c7a59
a8294f2
 
 
 
 
e6acaf6
 
 
 
 
 
 
 
 
cdba7f7
e6acaf6
51482f3
407b252
e6acaf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
407b252
e6acaf6
407b252
e6acaf6
 
 
51482f3
407b252
51482f3
 
e6acaf6
51482f3
e6acaf6
41c7a59
e6acaf6
 
 
 
 
 
 
 
 
 
 
 
 
51482f3
e6acaf6
 
 
51482f3
e6acaf6
 
 
 
 
 
 
 
 
 
51482f3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import copy
import re
from rag.nlp import bullets_category, is_english, tokenize, remove_contents_table, \
    hierarchical_merge, make_colon_as_title, naive_merge, random_choices
from rag.nlp import huqie
from deepdoc.parser import PdfParser, DocxParser


class Pdf(PdfParser):
    def __call__(self, filename, binary=None, from_page=0,

                 to_page=100000, zoomin=3, callback=None):
        self.__images__(
            filename if not binary else binary,
            zoomin,
            from_page,
            to_page)
        callback(0.1, "OCR finished")

        from timeit import default_timer as timer
        start = timer()
        self._layouts_rec(zoomin)
        callback(0.47, "Layout analysis finished")
        print("paddle layouts:", timer() - start)
        self._table_transformer_job(zoomin)
        callback(0.68, "Table analysis finished")
        self._text_merge()
        self._concat_downward(concat_between_pages=False)
        self._filter_forpages()
        self._merge_with_same_bullet()
        callback(0.75, "Text merging finished.")
        tbls = self._extract_table_figure(True, zoomin, False)

        callback(0.8, "Text extraction finished")

        return [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno","")) for b in self.boxes], tbls


def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs):
    """

        Supported file formats are docx, pdf, txt.

        Since a book is long and not all the parts are useful, if it's a PDF,

        please setup the page ranges for every book in order eliminate negative effects and save elapsed computing time.

    """
    doc = {
        "docnm_kwd": filename,
        "title_tks": huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", filename))
    }
    doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
    pdf_parser = None
    sections,tbls = [], []
    if re.search(r"\.docx?$", filename, re.IGNORECASE):
        callback(0.1, "Start to parse.")
        doc_parser = DocxParser()
        # TODO: table of contents need to be removed
        sections, tbls = doc_parser(binary if binary else filename, from_page=from_page, to_page=to_page)
        remove_contents_table(sections, eng=is_english(random_choices([t for t,_ in sections], k=200)))
        callback(0.8, "Finish parsing.")
    elif re.search(r"\.pdf$", filename, re.IGNORECASE):
        pdf_parser = Pdf()
        sections,tbls = pdf_parser(filename if not binary else binary,
                         from_page=from_page, to_page=to_page, callback=callback)
    elif re.search(r"\.txt$", filename, re.IGNORECASE):
        callback(0.1, "Start to parse.")
        txt = ""
        if binary:txt = binary.decode("utf-8")
        else:
            with open(filename, "r") as f:
                while True:
                    l = f.readline()
                    if not l:break
                    txt += l
        sections = txt.split("\n")
        sections = [(l,"") for l in sections if l]
        remove_contents_table(sections, eng = is_english(random_choices([t for t,_ in sections], k=200)))
        callback(0.8, "Finish parsing.")
    else: raise NotImplementedError("file type not supported yet(docx, pdf, txt supported)")

    make_colon_as_title(sections)
    bull = bullets_category([t for t in random_choices([t for t,_ in sections], k=100)])
    if bull >= 0: cks = hierarchical_merge(bull, sections, 3)
    else: cks = naive_merge(sections, kwargs.get("chunk_token_num", 256), kwargs.get("delimer", "\n。;!?"))

    sections = [t for t, _ in sections]
    # is it English
    eng = lang.lower() == "english"#is_english(random_choices(sections, k=218))

    res = []
    # add tables
    for img, rows in tbls:
        bs = 10
        de = ";" if eng else ";"
        for i in range(0, len(rows), bs):
            d = copy.deepcopy(doc)
            r = de.join(rows[i:i + bs])
            r = re.sub(r"\t——(来自| in ).*”%s" % de, "", r)
            tokenize(d, r, eng)
            d["image"] = img
            res.append(d)
            print("TABLE", d["content_with_weight"])
    # wrap up to es documents
    for ck in cks:
        d = copy.deepcopy(doc)
        ck = "\n".join(ck)
        if pdf_parser:
            d["image"] = pdf_parser.crop(ck)
            ck = pdf_parser.remove_tag(ck)
        tokenize(d, ck, eng)
        res.append(d)
    return res


if __name__ == "__main__":
    import sys
    def dummy(a, b):
        pass
    chunk(sys.argv[1], from_page=1, to_page=10, callback=dummy)