File size: 3,976 Bytes
96a1a44 41c7a59 cdba7f7 96a1a44 cdba7f7 96a1a44 e6acaf6 96a1a44 cdba7f7 e6acaf6 96a1a44 e6acaf6 96a1a44 e6acaf6 96a1a44 e6acaf6 96a1a44 e6acaf6 96a1a44 41c7a59 a8294f2 96a1a44 6224edc 96a1a44 41c7a59 96a1a44 51482f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
import copy
import re
from rag.nlp import huqie, tokenize
from deepdoc.parser import PdfParser
from rag.utils import num_tokens_from_string
class Pdf(PdfParser):
def __call__(self, filename, binary=None, from_page=0,
to_page=100000, zoomin=3, callback=None):
self.__images__(
filename if not binary else binary,
zoomin,
from_page,
to_page)
callback(0.2, "OCR finished.")
from timeit import default_timer as timer
start = timer()
self._layouts_rec(zoomin)
callback(0.5, "Layout analysis finished.")
print("paddle layouts:", timer() - start)
self._table_transformer_job(zoomin)
callback(0.7, "Table analysis finished.")
self._text_merge()
self._concat_downward(concat_between_pages=False)
self._filter_forpages()
callback(0.77, "Text merging finished")
tbls = self._extract_table_figure(True, zoomin, False)
# clean mess
for b in self.boxes:
b["text"] = re.sub(r"([\t ]|\u3000){2,}", " ", b["text"].strip())
# merge chunks with the same bullets
self._merge_with_same_bullet()
# merge title with decent chunk
i = 0
while i + 1 < len(self.boxes):
b = self.boxes[i]
if b.get("layoutno","").find("title") < 0:
i += 1
continue
b_ = self.boxes[i + 1]
b_["text"] = b["text"] + "\n" + b_["text"]
b_["x0"] = min(b["x0"], b_["x0"])
b_["x1"] = max(b["x1"], b_["x1"])
b_["top"] = b["top"]
self.boxes.pop(i)
callback(0.8, "Parsing finished")
for b in self.boxes: print(b["text"], b.get("layoutno"))
print(tbls)
return [b["text"] + self._line_tag(b, zoomin) for b in self.boxes], tbls
def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs):
"""
Only pdf is supported.
"""
pdf_parser = None
if re.search(r"\.pdf$", filename, re.IGNORECASE):
pdf_parser = Pdf()
cks, tbls = pdf_parser(filename if not binary else binary,
from_page=from_page, to_page=to_page, callback=callback)
else: raise NotImplementedError("file type not supported yet(pdf supported)")
doc = {
"docnm_kwd": filename
}
doc["title_tks"] = huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", doc["docnm_kwd"]))
doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
# is it English
eng = lang.lower() == "english"#pdf_parser.is_english
res = []
# add tables
for img, rows in tbls:
bs = 10
de = ";" if eng else ";"
for i in range(0, len(rows), bs):
d = copy.deepcopy(doc)
r = de.join(rows[i:i + bs])
r = re.sub(r"\t——(来自| in ).*”%s" % de, "", r)
tokenize(d, r, eng)
d["image"] = img
res.append(d)
i = 0
chunk = []
tk_cnt = 0
def add_chunk():
nonlocal chunk, res, doc, pdf_parser, tk_cnt
d = copy.deepcopy(doc)
ck = "\n".join(chunk)
tokenize(d, pdf_parser.remove_tag(ck), pdf_parser.is_english)
d["image"] = pdf_parser.crop(ck)
res.append(d)
chunk = []
tk_cnt = 0
while i < len(cks):
if tk_cnt > 128: add_chunk()
txt = cks[i]
txt_ = pdf_parser.remove_tag(txt)
i += 1
cnt = num_tokens_from_string(txt_)
chunk.append(txt)
tk_cnt += cnt
if chunk: add_chunk()
for i, d in enumerate(res):
print(d)
# d["image"].save(f"./logs/{i}.jpg")
return res
if __name__ == "__main__":
import sys
def dummy(a, b):
pass
chunk(sys.argv[1], callback=dummy)
|