File size: 5,043 Bytes
3079197 484e5ab 3079197 41c7a59 d0db329 41c7a59 d0db329 41c7a59 d0db329 3079197 d0db329 34b2ab3 d0db329 41c7a59 d0db329 41c7a59 5e0a689 3079197 41c7a59 d0db329 3079197 d0db329 e32ef75 d0db329 41c7a59 3079197 41c7a59 3079197 d0db329 3079197 41c7a59 d0db329 41c7a59 e32ef75 5e0a689 41c7a59 5e0a689 41c7a59 5e0a689 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import io
from abc import ABC
from PIL import Image
from openai import OpenAI
import os
import base64
from io import BytesIO
from api.utils import get_uuid
from api.utils.file_utils import get_project_base_directory
class Base(ABC):
def __init__(self, key, model_name):
pass
def describe(self, image, max_tokens=300):
raise NotImplementedError("Please implement encode method!")
def image2base64(self, image):
if isinstance(image, bytes):
return base64.b64encode(image).decode("utf-8")
if isinstance(image, BytesIO):
return base64.b64encode(image.getvalue()).decode("utf-8")
buffered = BytesIO()
try:
image.save(buffered, format="JPEG")
except Exception as e:
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def prompt(self, b64):
return [
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{b64}"
},
},
{
"text": "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else \
"Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out.",
},
],
}
]
class GptV4(Base):
def __init__(self, key, model_name="gpt-4-vision-preview", lang="Chinese"):
self.client = OpenAI(api_key=key)
self.model_name = model_name
self.lang = lang
def describe(self, image, max_tokens=300):
b64 = self.image2base64(image)
res = self.client.chat.completions.create(
model=self.model_name,
messages=self.prompt(b64),
max_tokens=max_tokens,
)
return res.choices[0].message.content.strip(), res.usage.total_tokens
class QWenCV(Base):
def __init__(self, key, model_name="qwen-vl-chat-v1", lang="Chinese"):
import dashscope
dashscope.api_key = key
self.model_name = model_name
self.lang = lang
def prompt(self, binary):
# stupid as hell
tmp_dir = get_project_base_directory("tmp")
if not os.path.exists(tmp_dir): os.mkdir(tmp_dir)
path = os.path.join(tmp_dir, "%s.jpg"%get_uuid())
Image.open(io.BytesIO(binary)).save(path)
return [
{
"role": "user",
"content": [
{
"image": f"file://{path}"
},
{
"text": "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else \
"Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out.",
},
],
}
]
def describe(self, image, max_tokens=300):
from http import HTTPStatus
from dashscope import MultiModalConversation
response = MultiModalConversation.call(model=self.model_name,
messages=self.prompt(image))
if response.status_code == HTTPStatus.OK:
return response.output.choices[0]['message']['content'][0]["text"], response.usage.output_tokens
return response.message, 0
from zhipuai import ZhipuAI
class Zhipu4V(Base):
def __init__(self, key, model_name="glm-4v", lang="Chinese"):
self.client = ZhipuAI(api_key=key)
self.model_name = model_name
self.lang = lang
def describe(self, image, max_tokens=1024):
b64 = self.image2base64(image)
res = self.client.chat.completions.create(
model=self.model_name,
messages=self.prompt(b64),
max_tokens=max_tokens,
)
return res.choices[0].message.content.strip(), res.usage.total_tokens
|