File size: 8,234 Bytes
3079197
484e5ab
3079197
 
 
 
 
 
 
 
 
 
 
 
 
c372afe
3079197
3198faf
3079197
 
 
 
6224edc
41c7a59
6224edc
3079197
 
e6acaf6
 
6224edc
3079197
3198faf
3079197
3198faf
 
6224edc
3079197
 
6224edc
41c7a59
6224edc
 
9bf75d4
6224edc
9bf75d4
 
3079197
 
 
6224edc
b47e49a
6224edc
407b252
6224edc
 
 
e6acaf6
407b252
5e0a689
41c7a59
6224edc
 
3079197
41c7a59
 
 
 
6224edc
 
e6acaf6
6224edc
 
41c7a59
 
6224edc
41c7a59
 
6224edc
407b252
6224edc
 
3079197
41c7a59
 
3079197
 
 
6224edc
 
3079197
6224edc
 
 
 
3079197
 
41c7a59
3079197
c5ea37c
3079197
 
3198faf
41c7a59
 
 
 
 
407b252
3079197
41c7a59
 
 
 
 
3079197
 
6224edc
3079197
41c7a59
 
 
3198faf
41c7a59
 
3198faf
a8294f2
3079197
41c7a59
3079197
6224edc
3079197
6224edc
 
3079197
6224edc
3079197
6224edc
34b2ab3
41c7a59
 
3079197
6224edc
c5ea37c
6224edc
3079197
 
 
6224edc
 
 
3198faf
6224edc
3079197
 
 
407b252
3079197
 
 
 
 
 
 
 
 
 
 
 
 
5e0a689
41c7a59
 
3079197
e6acaf6
 
 
 
3079197
 
5e0a689
41c7a59
 
e6acaf6
3079197
 
c372afe
6224edc
3079197
 
 
 
41c7a59
 
 
 
3198faf
3079197
 
 
 
 
 
c5ea37c
e32ef75
 
 
c5ea37c
3079197
e32ef75
41c7a59
 
 
3079197
3198faf
407b252
3079197
 
 
 
5e0a689
3079197
6224edc
3079197
 
6224edc
3079197
34b2ab3
3079197
 
6224edc
3079197
 
e6acaf6
41c7a59
 
407b252
e6acaf6
41c7a59
 
 
 
 
3198faf
3079197
 
 
 
 
3198faf
 
 
 
 
3079197
6224edc
3079197
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import datetime
import json
import logging
import os
import hashlib
import copy
import re
import sys
import traceback
from functools import partial
from timeit import default_timer as timer

from elasticsearch_dsl import Q

from api.db.services.task_service import TaskService
from rag.settings import cron_logger, DOC_MAXIMUM_SIZE
from rag.utils import ELASTICSEARCH
from rag.utils import MINIO
from rag.utils import rmSpace, findMaxTm

from rag.nlp import search
from io import BytesIO
import pandas as pd

from rag.app import laws, paper, presentation, manual, qa, table, book, resume, picture

from api.db import LLMType, ParserType
from api.db.services.document_service import DocumentService
from api.db.services.llm_service import LLMBundle
from api.settings import database_logger
from api.utils.file_utils import get_project_base_directory

BATCH_SIZE = 64

FACTORY = {
    ParserType.GENERAL.value: laws,
    ParserType.PAPER.value: paper,
    ParserType.BOOK.value: book,
    ParserType.PRESENTATION.value: presentation,
    ParserType.MANUAL.value: manual,
    ParserType.LAWS.value: laws,
    ParserType.QA.value: qa,
    ParserType.TABLE.value: table,
    ParserType.RESUME.value: resume,
    ParserType.PICTURE.value: picture,
}


def set_progress(task_id, from_page=0, to_page=-1,
                 prog=None, msg="Processing..."):
    if prog is not None and prog < 0:
        msg = "[ERROR]"+msg
    cancel = TaskService.do_cancel(task_id)
    if cancel:
        msg += " [Canceled]"
        prog = -1

    if to_page > 0:
        msg = f"Page({from_page}~{to_page}): " + msg
    d = {"progress_msg": msg}
    if prog is not None:
        d["progress"] = prog
    try:
        TaskService.update_progress(task_id, d)
    except Exception as e:
        cron_logger.error("set_progress:({}), {}".format(task_id, str(e)))

    if cancel:
        sys.exit()


def collect(comm, mod, tm):
    tasks = TaskService.get_tasks(tm, mod, comm)
    if len(tasks) == 0:
        return pd.DataFrame()
    tasks = pd.DataFrame(tasks)
    mtm = tasks["update_time"].max()
    cron_logger.info("TOTAL:{}, To:{}".format(len(tasks), mtm))
    return tasks


def build(row):
    if row["size"] > DOC_MAXIMUM_SIZE:
        set_progress(row["id"], prog=-1, msg="File size exceeds( <= %dMb )" %
                     (int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
        return []

    callback = partial(
        set_progress,
        row["id"],
        row["from_page"],
        row["to_page"])
    chunker = FACTORY[row["parser_id"].lower()]
    try:
        cron_logger.info(
            "Chunkking {}/{}".format(row["location"], row["name"]))
        cks = chunker.chunk(row["name"], binary=MINIO.get(row["kb_id"], row["location"]), from_page=row["from_page"],
                            to_page=row["to_page"], lang=row["language"], callback=callback,
                            kb_id=row["kb_id"], parser_config=row["parser_config"], tenant_id=row["tenant_id"])
    except Exception as e:
        if re.search("(No such file|not found)", str(e)):
            callback(-1, "Can not find file <%s>" % row["doc_name"])
        else:
            callback(-1, f"Internal server error: %s" %
                     str(e).replace("'", ""))
        traceback.print_exc()

        cron_logger.warn(
            "Chunkking {}/{}: {}".format(row["location"], row["name"], str(e)))

        return

    callback(msg="Finished slicing files(%d). Start to embedding the content."%len(cks))

    docs = []
    doc = {
        "doc_id": row["doc_id"],
        "kb_id": [str(row["kb_id"])]
    }
    for ck in cks:
        d = copy.deepcopy(doc)
        d.update(ck)
        md5 = hashlib.md5()
        md5.update((ck["content_with_weight"] +
                   str(d["doc_id"])).encode("utf-8"))
        d["_id"] = md5.hexdigest()
        d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
        d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
        if not d.get("image"):
            docs.append(d)
            continue

        output_buffer = BytesIO()
        if isinstance(d["image"], bytes):
            output_buffer = BytesIO(d["image"])
        else:
            d["image"].save(output_buffer, format='JPEG')

        MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue())
        d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"])
        del d["image"]
        docs.append(d)

    return docs


def init_kb(row):
    idxnm = search.index_name(row["tenant_id"])
    if ELASTICSEARCH.indexExist(idxnm):
        return
    return ELASTICSEARCH.createIdx(idxnm, json.load(
        open(os.path.join(get_project_base_directory(), "conf", "mapping.json"), "r")))


def embedding(docs, mdl, parser_config={}):
    tts, cnts = [rmSpace(d["title_tks"]) for d in docs if d.get("title_tks")], [
        d["content_with_weight"] for d in docs]
    tk_count = 0
    if len(tts) == len(cnts):
        tts, c = mdl.encode(tts)
        tk_count += c

    cnts, c = mdl.encode(cnts)
    tk_count += c
    title_w = float(parser_config.get("filename_embd_weight", 0.1))
    vects = (title_w * tts + (1 - title_w) *
             cnts) if len(tts) == len(cnts) else cnts

    assert len(vects) == len(docs)
    for i, d in enumerate(docs):
        v = vects[i].tolist()
        d["q_%d_vec" % len(v)] = v
    return tk_count


def main(comm, mod):
    tm_fnm = os.path.join(
        get_project_base_directory(),
        "rag/res",
        f"{comm}-{mod}.tm")
    tm = findMaxTm(tm_fnm)
    rows = collect(comm, mod, tm)
    if len(rows) == 0:
        return

    tmf = open(tm_fnm, "a+")
    for _, r in rows.iterrows():
        callback = partial(set_progress, r["id"], r["from_page"], r["to_page"])
        try:
            embd_mdl = LLMBundle(r["tenant_id"], LLMType.EMBEDDING)
        except Exception as e:
            callback(prog=-1, msg=str(e))
            continue

        cks = build(r)
        if cks is None:
            continue
        if not cks:
            tmf.write(str(r["update_time"]) + "\n")
            callback(1., "No chunk! Done!")
            continue
        # TODO: exception handler
        ## set_progress(r["did"], -1, "ERROR: ")
        try:
            tk_count = embedding(cks, embd_mdl, r["parser_config"])
        except Exception as e:
            callback(-1, "Embedding error:{}".format(str(e)))
            cron_logger.error(str(e))

        callback(msg="Finished embedding! Start to build index!")
        init_kb(r)
        chunk_count = len(set([c["_id"] for c in cks]))
        es_r = ELASTICSEARCH.bulk(cks, search.index_name(r["tenant_id"]))
        if es_r:
            callback(-1, "Index failure!")
            cron_logger.error(str(es_r))
        else:
            if TaskService.do_cancel(r["id"]):
                ELASTICSEARCH.deleteByQuery(
                    Q("match", doc_id=r["doc_id"]), idxnm=search.index_name(r["tenant_id"]))
                continue
            callback(1., "Done!")
            DocumentService.increment_chunk_num(
                r["doc_id"], r["kb_id"], tk_count, chunk_count, 0)
            cron_logger.info(
                "Chunk doc({}), token({}), chunks({})".format(
                    r["id"], tk_count, len(cks)))

        tmf.write(str(r["update_time"]) + "\n")
    tmf.close()


if __name__ == "__main__":
    peewee_logger = logging.getLogger('peewee')
    peewee_logger.propagate = False
    peewee_logger.addHandler(database_logger.handlers[0])
    peewee_logger.setLevel(database_logger.level)

    from mpi4py import MPI

    comm = MPI.COMM_WORLD
    main(comm.Get_size(), comm.Get_rank())