File size: 8,234 Bytes
3079197 484e5ab 3079197 c372afe 3079197 3198faf 3079197 6224edc 41c7a59 6224edc 3079197 e6acaf6 6224edc 3079197 3198faf 3079197 3198faf 6224edc 3079197 6224edc 41c7a59 6224edc 9bf75d4 6224edc 9bf75d4 3079197 6224edc b47e49a 6224edc 407b252 6224edc e6acaf6 407b252 5e0a689 41c7a59 6224edc 3079197 41c7a59 6224edc e6acaf6 6224edc 41c7a59 6224edc 41c7a59 6224edc 407b252 6224edc 3079197 41c7a59 3079197 6224edc 3079197 6224edc 3079197 41c7a59 3079197 c5ea37c 3079197 3198faf 41c7a59 407b252 3079197 41c7a59 3079197 6224edc 3079197 41c7a59 3198faf 41c7a59 3198faf a8294f2 3079197 41c7a59 3079197 6224edc 3079197 6224edc 3079197 6224edc 3079197 6224edc 34b2ab3 41c7a59 3079197 6224edc c5ea37c 6224edc 3079197 6224edc 3198faf 6224edc 3079197 407b252 3079197 5e0a689 41c7a59 3079197 e6acaf6 3079197 5e0a689 41c7a59 e6acaf6 3079197 c372afe 6224edc 3079197 41c7a59 3198faf 3079197 c5ea37c e32ef75 c5ea37c 3079197 e32ef75 41c7a59 3079197 3198faf 407b252 3079197 5e0a689 3079197 6224edc 3079197 6224edc 3079197 34b2ab3 3079197 6224edc 3079197 e6acaf6 41c7a59 407b252 e6acaf6 41c7a59 3198faf 3079197 3198faf 3079197 6224edc 3079197 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import datetime
import json
import logging
import os
import hashlib
import copy
import re
import sys
import traceback
from functools import partial
from timeit import default_timer as timer
from elasticsearch_dsl import Q
from api.db.services.task_service import TaskService
from rag.settings import cron_logger, DOC_MAXIMUM_SIZE
from rag.utils import ELASTICSEARCH
from rag.utils import MINIO
from rag.utils import rmSpace, findMaxTm
from rag.nlp import search
from io import BytesIO
import pandas as pd
from rag.app import laws, paper, presentation, manual, qa, table, book, resume, picture
from api.db import LLMType, ParserType
from api.db.services.document_service import DocumentService
from api.db.services.llm_service import LLMBundle
from api.settings import database_logger
from api.utils.file_utils import get_project_base_directory
BATCH_SIZE = 64
FACTORY = {
ParserType.GENERAL.value: laws,
ParserType.PAPER.value: paper,
ParserType.BOOK.value: book,
ParserType.PRESENTATION.value: presentation,
ParserType.MANUAL.value: manual,
ParserType.LAWS.value: laws,
ParserType.QA.value: qa,
ParserType.TABLE.value: table,
ParserType.RESUME.value: resume,
ParserType.PICTURE.value: picture,
}
def set_progress(task_id, from_page=0, to_page=-1,
prog=None, msg="Processing..."):
if prog is not None and prog < 0:
msg = "[ERROR]"+msg
cancel = TaskService.do_cancel(task_id)
if cancel:
msg += " [Canceled]"
prog = -1
if to_page > 0:
msg = f"Page({from_page}~{to_page}): " + msg
d = {"progress_msg": msg}
if prog is not None:
d["progress"] = prog
try:
TaskService.update_progress(task_id, d)
except Exception as e:
cron_logger.error("set_progress:({}), {}".format(task_id, str(e)))
if cancel:
sys.exit()
def collect(comm, mod, tm):
tasks = TaskService.get_tasks(tm, mod, comm)
if len(tasks) == 0:
return pd.DataFrame()
tasks = pd.DataFrame(tasks)
mtm = tasks["update_time"].max()
cron_logger.info("TOTAL:{}, To:{}".format(len(tasks), mtm))
return tasks
def build(row):
if row["size"] > DOC_MAXIMUM_SIZE:
set_progress(row["id"], prog=-1, msg="File size exceeds( <= %dMb )" %
(int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
return []
callback = partial(
set_progress,
row["id"],
row["from_page"],
row["to_page"])
chunker = FACTORY[row["parser_id"].lower()]
try:
cron_logger.info(
"Chunkking {}/{}".format(row["location"], row["name"]))
cks = chunker.chunk(row["name"], binary=MINIO.get(row["kb_id"], row["location"]), from_page=row["from_page"],
to_page=row["to_page"], lang=row["language"], callback=callback,
kb_id=row["kb_id"], parser_config=row["parser_config"], tenant_id=row["tenant_id"])
except Exception as e:
if re.search("(No such file|not found)", str(e)):
callback(-1, "Can not find file <%s>" % row["doc_name"])
else:
callback(-1, f"Internal server error: %s" %
str(e).replace("'", ""))
traceback.print_exc()
cron_logger.warn(
"Chunkking {}/{}: {}".format(row["location"], row["name"], str(e)))
return
callback(msg="Finished slicing files(%d). Start to embedding the content."%len(cks))
docs = []
doc = {
"doc_id": row["doc_id"],
"kb_id": [str(row["kb_id"])]
}
for ck in cks:
d = copy.deepcopy(doc)
d.update(ck)
md5 = hashlib.md5()
md5.update((ck["content_with_weight"] +
str(d["doc_id"])).encode("utf-8"))
d["_id"] = md5.hexdigest()
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
if not d.get("image"):
docs.append(d)
continue
output_buffer = BytesIO()
if isinstance(d["image"], bytes):
output_buffer = BytesIO(d["image"])
else:
d["image"].save(output_buffer, format='JPEG')
MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue())
d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"])
del d["image"]
docs.append(d)
return docs
def init_kb(row):
idxnm = search.index_name(row["tenant_id"])
if ELASTICSEARCH.indexExist(idxnm):
return
return ELASTICSEARCH.createIdx(idxnm, json.load(
open(os.path.join(get_project_base_directory(), "conf", "mapping.json"), "r")))
def embedding(docs, mdl, parser_config={}):
tts, cnts = [rmSpace(d["title_tks"]) for d in docs if d.get("title_tks")], [
d["content_with_weight"] for d in docs]
tk_count = 0
if len(tts) == len(cnts):
tts, c = mdl.encode(tts)
tk_count += c
cnts, c = mdl.encode(cnts)
tk_count += c
title_w = float(parser_config.get("filename_embd_weight", 0.1))
vects = (title_w * tts + (1 - title_w) *
cnts) if len(tts) == len(cnts) else cnts
assert len(vects) == len(docs)
for i, d in enumerate(docs):
v = vects[i].tolist()
d["q_%d_vec" % len(v)] = v
return tk_count
def main(comm, mod):
tm_fnm = os.path.join(
get_project_base_directory(),
"rag/res",
f"{comm}-{mod}.tm")
tm = findMaxTm(tm_fnm)
rows = collect(comm, mod, tm)
if len(rows) == 0:
return
tmf = open(tm_fnm, "a+")
for _, r in rows.iterrows():
callback = partial(set_progress, r["id"], r["from_page"], r["to_page"])
try:
embd_mdl = LLMBundle(r["tenant_id"], LLMType.EMBEDDING)
except Exception as e:
callback(prog=-1, msg=str(e))
continue
cks = build(r)
if cks is None:
continue
if not cks:
tmf.write(str(r["update_time"]) + "\n")
callback(1., "No chunk! Done!")
continue
# TODO: exception handler
## set_progress(r["did"], -1, "ERROR: ")
try:
tk_count = embedding(cks, embd_mdl, r["parser_config"])
except Exception as e:
callback(-1, "Embedding error:{}".format(str(e)))
cron_logger.error(str(e))
callback(msg="Finished embedding! Start to build index!")
init_kb(r)
chunk_count = len(set([c["_id"] for c in cks]))
es_r = ELASTICSEARCH.bulk(cks, search.index_name(r["tenant_id"]))
if es_r:
callback(-1, "Index failure!")
cron_logger.error(str(es_r))
else:
if TaskService.do_cancel(r["id"]):
ELASTICSEARCH.deleteByQuery(
Q("match", doc_id=r["doc_id"]), idxnm=search.index_name(r["tenant_id"]))
continue
callback(1., "Done!")
DocumentService.increment_chunk_num(
r["doc_id"], r["kb_id"], tk_count, chunk_count, 0)
cron_logger.info(
"Chunk doc({}), token({}), chunks({})".format(
r["id"], tk_count, len(cks)))
tmf.write(str(r["update_time"]) + "\n")
tmf.close()
if __name__ == "__main__":
peewee_logger = logging.getLogger('peewee')
peewee_logger.propagate = False
peewee_logger.addHandler(database_logger.handlers[0])
peewee_logger.setLevel(database_logger.level)
from mpi4py import MPI
comm = MPI.COMM_WORLD
main(comm.Get_size(), comm.Get_rank())
|