File size: 17,299 Bytes
a7642c6 6054f54 47ec63e 6054f54 758538f 47ec63e 6054f54 47ec63e eae0334 6054f54 47ec63e 758538f 47ec63e 758538f 47ec63e 758538f 6054f54 2493f1d 6054f54 2493f1d 6054f54 2493f1d 6054f54 2493f1d 6054f54 2493f1d 6054f54 758538f a3da325 758538f 9cfd69b 758538f 8e1cb41 758538f 6c8312a 47ec63e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License
"""
Reference:
- [graphrag](https://github.com/microsoft/graphrag)
- [LightRag](https://github.com/HKUDS/LightRAG)
"""
import html
import json
import logging
import re
import time
from collections import defaultdict
from copy import deepcopy
from hashlib import md5
from typing import Any, Callable
import networkx as nx
import numpy as np
import xxhash
from networkx.readwrite import json_graph
from api import settings
from rag.nlp import search, rag_tokenizer
from rag.utils.redis_conn import REDIS_CONN
ErrorHandlerFn = Callable[[BaseException | None, str | None, dict | None], None]
def perform_variable_replacements(
input: str, history: list[dict] | None = None, variables: dict | None = None
) -> str:
"""Perform variable replacements on the input string and in a chat log."""
if history is None:
history = []
if variables is None:
variables = {}
result = input
def replace_all(input: str) -> str:
result = input
for k, v in variables.items():
result = result.replace(f"{{{k}}}", v)
return result
result = replace_all(result)
for i, entry in enumerate(history):
if entry.get("role") == "system":
entry["content"] = replace_all(entry.get("content") or "")
return result
def clean_str(input: Any) -> str:
"""Clean an input string by removing HTML escapes, control characters, and other unwanted characters."""
# If we get non-string input, just give it back
if not isinstance(input, str):
return input
result = html.unescape(input.strip())
# https://stackoverflow.com/questions/4324790/removing-control-characters-from-a-string-in-python
return re.sub(r"[\"\x00-\x1f\x7f-\x9f]", "", result)
def dict_has_keys_with_types(
data: dict, expected_fields: list[tuple[str, type]]
) -> bool:
"""Return True if the given dictionary has the given keys with the given types."""
for field, field_type in expected_fields:
if field not in data:
return False
value = data[field]
if not isinstance(value, field_type):
return False
return True
def get_llm_cache(llmnm, txt, history, genconf):
hasher = xxhash.xxh64()
hasher.update(str(llmnm).encode("utf-8"))
hasher.update(str(txt).encode("utf-8"))
hasher.update(str(history).encode("utf-8"))
hasher.update(str(genconf).encode("utf-8"))
k = hasher.hexdigest()
bin = REDIS_CONN.get(k)
if not bin:
return
return bin
def set_llm_cache(llmnm, txt, v, history, genconf):
hasher = xxhash.xxh64()
hasher.update(str(llmnm).encode("utf-8"))
hasher.update(str(txt).encode("utf-8"))
hasher.update(str(history).encode("utf-8"))
hasher.update(str(genconf).encode("utf-8"))
k = hasher.hexdigest()
REDIS_CONN.set(k, v.encode("utf-8"), 24*3600)
def get_embed_cache(llmnm, txt):
hasher = xxhash.xxh64()
hasher.update(str(llmnm).encode("utf-8"))
hasher.update(str(txt).encode("utf-8"))
k = hasher.hexdigest()
bin = REDIS_CONN.get(k)
if not bin:
return
return np.array(json.loads(bin))
def set_embed_cache(llmnm, txt, arr):
hasher = xxhash.xxh64()
hasher.update(str(llmnm).encode("utf-8"))
hasher.update(str(txt).encode("utf-8"))
k = hasher.hexdigest()
arr = json.dumps(arr.tolist() if isinstance(arr, np.ndarray) else arr)
REDIS_CONN.set(k, arr.encode("utf-8"), 24*3600)
def get_tags_from_cache(kb_ids):
hasher = xxhash.xxh64()
hasher.update(str(kb_ids).encode("utf-8"))
k = hasher.hexdigest()
bin = REDIS_CONN.get(k)
if not bin:
return
return bin
def set_tags_to_cache(kb_ids, tags):
hasher = xxhash.xxh64()
hasher.update(str(kb_ids).encode("utf-8"))
k = hasher.hexdigest()
REDIS_CONN.set(k, json.dumps(tags).encode("utf-8"), 600)
def graph_merge(g1, g2):
g = g2.copy()
for n, attr in g1.nodes(data=True):
if n not in g2.nodes():
g.add_node(n, **attr)
continue
for source, target, attr in g1.edges(data=True):
if g.has_edge(source, target):
g[source][target].update({"weight": attr.get("weight", 0)+1})
continue
g.add_edge(source, target)#, **attr)
for node_degree in g.degree:
g.nodes[str(node_degree[0])]["rank"] = int(node_degree[1])
return g
def compute_args_hash(*args):
return md5(str(args).encode()).hexdigest()
def handle_single_entity_extraction(
record_attributes: list[str],
chunk_key: str,
):
if len(record_attributes) < 4 or record_attributes[0] != '"entity"':
return None
# add this record as a node in the G
entity_name = clean_str(record_attributes[1].upper())
if not entity_name.strip():
return None
entity_type = clean_str(record_attributes[2].upper())
entity_description = clean_str(record_attributes[3])
entity_source_id = chunk_key
return dict(
entity_name=entity_name.upper(),
entity_type=entity_type.upper(),
description=entity_description,
source_id=entity_source_id,
)
def handle_single_relationship_extraction(record_attributes: list[str], chunk_key: str):
if len(record_attributes) < 5 or record_attributes[0] != '"relationship"':
return None
# add this record as edge
source = clean_str(record_attributes[1].upper())
target = clean_str(record_attributes[2].upper())
edge_description = clean_str(record_attributes[3])
edge_keywords = clean_str(record_attributes[4])
edge_source_id = chunk_key
weight = (
float(record_attributes[-1]) if is_float_regex(record_attributes[-1]) else 1.0
)
pair = sorted([source.upper(), target.upper()])
return dict(
src_id=pair[0],
tgt_id=pair[1],
weight=weight,
description=edge_description,
keywords=edge_keywords,
source_id=edge_source_id,
metadata={"created_at": time.time()},
)
def pack_user_ass_to_openai_messages(*args: str):
roles = ["user", "assistant"]
return [
{"role": roles[i % 2], "content": content} for i, content in enumerate(args)
]
def split_string_by_multi_markers(content: str, markers: list[str]) -> list[str]:
"""Split a string by multiple markers"""
if not markers:
return [content]
results = re.split("|".join(re.escape(marker) for marker in markers), content)
return [r.strip() for r in results if r.strip()]
def is_float_regex(value):
return bool(re.match(r"^[-+]?[0-9]*\.?[0-9]+$", value))
def chunk_id(chunk):
return xxhash.xxh64((chunk["content_with_weight"] + chunk["kb_id"]).encode("utf-8")).hexdigest()
def get_entity(tenant_id, kb_id, ent_name):
conds = {
"fields": ["content_with_weight"],
"entity_kwd": ent_name,
"size": 10000,
"knowledge_graph_kwd": ["entity"]
}
res = []
es_res = settings.retrievaler.search(conds, search.index_name(tenant_id), [kb_id])
for id in es_res.ids:
try:
if isinstance(ent_name, str):
return json.loads(es_res.field[id]["content_with_weight"])
res.append(json.loads(es_res.field[id]["content_with_weight"]))
except Exception:
continue
return res
def set_entity(tenant_id, kb_id, embd_mdl, ent_name, meta):
chunk = {
"important_kwd": [ent_name],
"title_tks": rag_tokenizer.tokenize(ent_name),
"entity_kwd": ent_name,
"knowledge_graph_kwd": "entity",
"entity_type_kwd": meta["entity_type"],
"content_with_weight": json.dumps(meta, ensure_ascii=False),
"content_ltks": rag_tokenizer.tokenize(meta["description"]),
"source_id": list(set(meta["source_id"])),
"kb_id": kb_id,
"available_int": 0
}
chunk["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(chunk["content_ltks"])
res = settings.retrievaler.search({"entity_kwd": ent_name, "size": 1, "fields": []},
search.index_name(tenant_id), [kb_id])
if res.ids:
settings.docStoreConn.update({"entity_kwd": ent_name}, chunk, search.index_name(tenant_id), kb_id)
else:
ebd = get_embed_cache(embd_mdl.llm_name, ent_name)
if ebd is None:
try:
ebd, _ = embd_mdl.encode([ent_name])
ebd = ebd[0]
set_embed_cache(embd_mdl.llm_name, ent_name, ebd)
except Exception as e:
logging.exception(f"Fail to embed entity: {e}")
if ebd is not None:
chunk["q_%d_vec" % len(ebd)] = ebd
settings.docStoreConn.insert([{"id": chunk_id(chunk), **chunk}], search.index_name(tenant_id))
def get_relation(tenant_id, kb_id, from_ent_name, to_ent_name, size=1):
ents = from_ent_name
if isinstance(ents, str):
ents = [from_ent_name]
if isinstance(to_ent_name, str):
to_ent_name = [to_ent_name]
ents.extend(to_ent_name)
ents = list(set(ents))
conds = {
"fields": ["content_with_weight"],
"size": size,
"from_entity_kwd": ents,
"to_entity_kwd": ents,
"knowledge_graph_kwd": ["relation"]
}
res = []
es_res = settings.retrievaler.search(conds, search.index_name(tenant_id), [kb_id] if isinstance(kb_id, str) else kb_id)
for id in es_res.ids:
try:
if size == 1:
return json.loads(es_res.field[id]["content_with_weight"])
res.append(json.loads(es_res.field[id]["content_with_weight"]))
except Exception:
continue
return res
def set_relation(tenant_id, kb_id, embd_mdl, from_ent_name, to_ent_name, meta):
chunk = {
"from_entity_kwd": from_ent_name,
"to_entity_kwd": to_ent_name,
"knowledge_graph_kwd": "relation",
"content_with_weight": json.dumps(meta, ensure_ascii=False),
"content_ltks": rag_tokenizer.tokenize(meta["description"]),
"important_kwd": meta["keywords"],
"source_id": list(set(meta["source_id"])),
"weight_int": int(meta["weight"]),
"kb_id": kb_id,
"available_int": 0
}
chunk["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(chunk["content_ltks"])
res = settings.retrievaler.search({"from_entity_kwd": to_ent_name, "to_entity_kwd": to_ent_name, "size": 1, "fields": []},
search.index_name(tenant_id), [kb_id])
if res.ids:
settings.docStoreConn.update({"from_entity_kwd": from_ent_name, "to_entity_kwd": to_ent_name},
chunk,
search.index_name(tenant_id), kb_id)
else:
txt = f"{from_ent_name}->{to_ent_name}"
ebd = get_embed_cache(embd_mdl.llm_name, txt)
if ebd is None:
try:
ebd, _ = embd_mdl.encode([txt+f": {meta['description']}"])
ebd = ebd[0]
set_embed_cache(embd_mdl.llm_name, txt, ebd)
except Exception as e:
logging.exception(f"Fail to embed entity relation: {e}")
if ebd is not None:
chunk["q_%d_vec" % len(ebd)] = ebd
settings.docStoreConn.insert([{"id": chunk_id(chunk), **chunk}], search.index_name(tenant_id))
def get_graph(tenant_id, kb_id):
conds = {
"fields": ["content_with_weight", "source_id"],
"removed_kwd": "N",
"size": 1,
"knowledge_graph_kwd": ["graph"]
}
res = settings.retrievaler.search(conds, search.index_name(tenant_id), [kb_id])
for id in res.ids:
try:
return json_graph.node_link_graph(json.loads(res.field[id]["content_with_weight"]), edges="edges"), \
res.field[id]["source_id"]
except Exception:
continue
return None, None
def set_graph(tenant_id, kb_id, graph, docids):
chunk = {
"content_with_weight": json.dumps(nx.node_link_data(graph, edges="edges"), ensure_ascii=False,
indent=2),
"knowledge_graph_kwd": "graph",
"kb_id": kb_id,
"source_id": list(docids),
"available_int": 0,
"removed_kwd": "N"
}
res = settings.retrievaler.search({"knowledge_graph_kwd": "graph", "size": 1, "fields": []}, search.index_name(tenant_id), [kb_id])
if res.ids:
settings.docStoreConn.update({"knowledge_graph_kwd": "graph"}, chunk,
search.index_name(tenant_id), kb_id)
else:
settings.docStoreConn.insert([{"id": chunk_id(chunk), **chunk}], search.index_name(tenant_id))
def is_continuous_subsequence(subseq, seq):
def find_all_indexes(tup, value):
indexes = []
start = 0
while True:
try:
index = tup.index(value, start)
indexes.append(index)
start = index + 1
except ValueError:
break
return indexes
index_list = find_all_indexes(seq,subseq[0])
for idx in index_list:
if idx!=len(seq)-1:
if seq[idx+1]==subseq[-1]:
return True
return False
def merge_tuples(list1, list2):
result = []
for tup in list1:
last_element = tup[-1]
if last_element in tup[:-1]:
result.append(tup)
else:
matching_tuples = [t for t in list2 if t[0] == last_element]
already_match_flag = 0
for match in matching_tuples:
matchh = (match[1], match[0])
if is_continuous_subsequence(match, tup) or is_continuous_subsequence(matchh, tup):
continue
already_match_flag = 1
merged_tuple = tup + match[1:]
result.append(merged_tuple)
if not already_match_flag:
result.append(tup)
return result
def update_nodes_pagerank_nhop_neighbour(tenant_id, kb_id, graph, n_hop):
def n_neighbor(id):
nonlocal graph, n_hop
count = 0
source_edge = list(graph.edges(id))
if not source_edge:
return []
count = count + 1
while count < n_hop:
count = count + 1
sc_edge = deepcopy(source_edge)
source_edge = []
for pair in sc_edge:
append_edge = list(graph.edges(pair[-1]))
for tuples in merge_tuples([pair], append_edge):
source_edge.append(tuples)
nbrs = []
for path in source_edge:
n = {"path": path, "weights": []}
wts = nx.get_edge_attributes(graph, 'weight')
for i in range(len(path)-1):
f, t = path[i], path[i+1]
n["weights"].append(wts.get((f, t), 0))
nbrs.append(n)
return nbrs
pr = nx.pagerank(graph)
for n, p in pr.items():
graph.nodes[n]["pagerank"] = p
try:
settings.docStoreConn.update({"entity_kwd": n, "kb_id": kb_id},
{"rank_flt": p,
"n_hop_with_weight": json.dumps(n_neighbor(n), ensure_ascii=False)},
search.index_name(tenant_id), kb_id)
except Exception as e:
logging.exception(e)
ty2ents = defaultdict(list)
for p, r in sorted(pr.items(), key=lambda x: x[1], reverse=True):
ty = graph.nodes[p].get("entity_type")
if not ty or len(ty2ents[ty]) > 12:
continue
ty2ents[ty].append(p)
chunk = {
"content_with_weight": json.dumps(ty2ents, ensure_ascii=False),
"kb_id": kb_id,
"knowledge_graph_kwd": "ty2ents",
"available_int": 0
}
res = settings.retrievaler.search({"knowledge_graph_kwd": "ty2ents", "size": 1, "fields": []},
search.index_name(tenant_id), [kb_id])
if res.ids:
settings.docStoreConn.update({"knowledge_graph_kwd": "ty2ents"},
chunk,
search.index_name(tenant_id), kb_id)
else:
settings.docStoreConn.insert([{"id": chunk_id(chunk), **chunk}], search.index_name(tenant_id))
def get_entity_type2sampels(idxnms, kb_ids: list):
es_res = settings.retrievaler.search({"knowledge_graph_kwd": "ty2ents", "kb_id": kb_ids,
"size": 10000,
"fields": ["content_with_weight"]},
idxnms, kb_ids)
res = defaultdict(list)
for id in es_res.ids:
smp = es_res.field[id].get("content_with_weight")
if not smp:
continue
try:
smp = json.loads(smp)
except Exception as e:
logging.exception(e)
for ty, ents in smp.items():
res[ty].extend(ents)
return res
def flat_uniq_list(arr, key):
res = []
for a in arr:
a = a[key]
if isinstance(a, list):
res.extend(a)
else:
res.append(a)
return list(set(res))
|