File size: 6,529 Bytes
6054f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6ce919
6054f54
 
 
 
 
 
 
 
c60fd19
b6ce919
 
 
 
527e971
6054f54
 
 
c60fd19
 
6054f54
 
174de9f
6054f54
 
 
 
 
 
 
 
73c78d3
6054f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6ce919
 
6054f54
 
c530565
6054f54
 
 
 
 
 
 
73c78d3
6054f54
 
20174e9
 
6054f54
 
 
 
 
20174e9
 
6054f54
 
 
 
 
6d4f792
6054f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d4f792
6054f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c60fd19
 
 
 
 
 
6054f54
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import re
from concurrent.futures import ThreadPoolExecutor
import json
from functools import reduce
from typing import List
import networkx as nx
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from api.db.services.user_service import TenantService
from graphrag.community_reports_extractor import CommunityReportsExtractor
from graphrag.entity_resolution import EntityResolution
from graphrag.graph_extractor import GraphExtractor
from graphrag.mind_map_extractor import MindMapExtractor
from rag.nlp import rag_tokenizer
from rag.utils import num_tokens_from_string


def be_children(obj: dict, keyset:set):
    if isinstance(obj, str):
        obj = [obj]
    if isinstance(obj, list):
        for i in obj: keyset.add(i)
        return [{"id": re.sub(r"\*+", "", i), "children":[]} for i in obj]
    arr = []
    for k,v in obj.items():
        k = re.sub(r"\*+", "", k)
        if not k or k in keyset:continue
        keyset.add(k)
        arr.append({
            "id": k,
            "children": be_children(v, keyset)
        })
    return arr


def graph_merge(g1, g2):
    g = g2.copy()
    for n, attr in g1.nodes(data=True):
        if n not in g2.nodes():
            g.add_node(n, **attr)
            continue

        g.nodes[n]["weight"] += 1
        if g.nodes[n]["description"].lower().find(attr["description"][:32].lower()) < 0:
            g.nodes[n]["description"] += "\n" + attr["description"]

    for source, target, attr in g1.edges(data=True):
        if g.has_edge(source, target):
            g[source][target].update({"weight": attr["weight"]+1})
            continue
        g.add_edge(source, target, **attr)

    for node_degree in g.degree:
        g.nodes[str(node_degree[0])]["rank"] = int(node_degree[1])
    return g


def build_knowlege_graph_chunks(tenant_id: str, chunks: List[str], callback, entity_types=["organization", "person", "location", "event", "time"]):
    _, tenant = TenantService.get_by_id(tenant_id)
    llm_bdl = LLMBundle(tenant_id, LLMType.CHAT, tenant.llm_id)
    ext = GraphExtractor(llm_bdl)
    left_token_count = llm_bdl.max_length - ext.prompt_token_count - 1024
    left_token_count = max(llm_bdl.max_length * 0.8, left_token_count)

    assert left_token_count > 0, f"The LLM context length({llm_bdl.max_length}) is smaller than prompt({ext.prompt_token_count})"

    texts, graphs = [], []
    cnt = 0
    threads = []
    exe = ThreadPoolExecutor(max_workers=12)
    for i in range(len(chunks)):
        tkn_cnt = num_tokens_from_string(chunks[i])
        if cnt+tkn_cnt >= left_token_count and texts:
            for b in range(0, len(texts), 16):
                threads.append(exe.submit(ext, ["\n".join(texts[b:b+16])], {"entity_types": entity_types}, callback))
            texts = []
            cnt = 0
        texts.append(chunks[i])
        cnt += tkn_cnt
    if texts:
        for b in range(0, len(texts), 16):
            threads.append(exe.submit(ext, ["\n".join(texts[b:b+16])], {"entity_types": entity_types}, callback))

    callback(0.5, "Extracting entities.")
    graphs = []
    for i, _ in enumerate(threads):
        graphs.append(_.result().output)
        callback(0.5 + 0.1*i/len(threads), f"Entities extraction progress ... {i+1}/{len(threads)}")

    graph = reduce(graph_merge, graphs)
    er = EntityResolution(llm_bdl)
    graph = er(graph).output

    _chunks = chunks
    chunks = []
    for n, attr in graph.nodes(data=True):
        if attr.get("rank", 0) == 0:
            print(f"Ignore entity: {n}")
            continue
        chunk = {
            "name_kwd": n,
            "important_kwd": [n],
            "title_tks": rag_tokenizer.tokenize(n),
            "content_with_weight": json.dumps({"name": n, **attr}, ensure_ascii=False),
            "content_ltks": rag_tokenizer.tokenize(attr["description"]),
            "knowledge_graph_kwd": "entity",
            "rank_int": attr["rank"],
            "weight_int": attr["weight"]
        }
        chunk["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(chunk["content_ltks"])
        chunks.append(chunk)

    callback(0.6, "Extracting community reports.")
    cr = CommunityReportsExtractor(llm_bdl)
    cr = cr(graph, callback=callback)
    for community, desc in zip(cr.structured_output, cr.output):
        chunk = {
            "title_tks": rag_tokenizer.tokenize(community["title"]),
            "content_with_weight": desc,
            "content_ltks": rag_tokenizer.tokenize(desc),
            "knowledge_graph_kwd": "community_report",
            "weight_flt": community["weight"],
            "entities_kwd": community["entities"],
            "important_kwd": community["entities"]
        }
        chunk["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(chunk["content_ltks"])
        chunks.append(chunk)

    chunks.append(
        {
            "content_with_weight": json.dumps(nx.node_link_data(graph), ensure_ascii=False, indent=2),
            "knowledge_graph_kwd": "graph"
        })

    callback(0.75, "Extracting mind graph.")
    mindmap = MindMapExtractor(llm_bdl)
    mg = mindmap(_chunks).output
    if not len(mg.keys()): return chunks

    if len(mg.keys()) > 1:
        keyset = set([re.sub(r"\*+", "", k) for k,v in mg.items() if isinstance(v, dict) and re.sub(r"\*+", "", k)])
        md_map = {"id": "root", "children": [{"id": re.sub(r"\*+", "", k), "children": be_children(v, keyset)} for k,v in mg.items() if isinstance(v, dict) and re.sub(r"\*+", "", k)]}
    else:
        k = re.sub(r"\*+", "", list(mg.keys())[0])
        md_map = {"id": k, "children": be_children(list(mg.items())[0][1], set([k]))}
    print(json.dumps(md_map, ensure_ascii=False, indent=2))
    chunks.append(
        {
            "content_with_weight": json.dumps(md_map, ensure_ascii=False, indent=2),
            "knowledge_graph_kwd": "mind_map"
        })

    return chunks