KevinHuSh
remove unused codes, seperate layout detection out as a new api. Add new rag methed 'table' (#55)
407b252
# -*- coding: utf-8 -*- | |
import json | |
import re | |
from elasticsearch_dsl import Q, Search, A | |
from typing import List, Optional, Dict, Union | |
from dataclasses import dataclass | |
from rag.settings import es_logger | |
from rag.utils import rmSpace | |
from rag.nlp import huqie, query | |
import numpy as np | |
def index_name(uid): return f"ragflow_{uid}" | |
class Dealer: | |
def __init__(self, es): | |
self.qryr = query.EsQueryer(es) | |
self.qryr.flds = [ | |
"title_tks^10", | |
"title_sm_tks^5", | |
"important_kwd^30", | |
"important_tks^20", | |
"content_ltks^2", | |
"content_sm_ltks"] | |
self.es = es | |
class SearchResult: | |
total: int | |
ids: List[str] | |
query_vector: List[float] = None | |
field: Optional[Dict] = None | |
highlight: Optional[Dict] = None | |
aggregation: Union[List, Dict, None] = None | |
keywords: Optional[List[str]] = None | |
group_docs: List[List] = None | |
def _vector(self, txt, emb_mdl, sim=0.8, topk=10): | |
qv, c = emb_mdl.encode_queries(txt) | |
return { | |
"field": "q_%d_vec" % len(qv), | |
"k": topk, | |
"similarity": sim, | |
"num_candidates": topk * 2, | |
"query_vector": qv | |
} | |
def search(self, req, idxnm, emb_mdl=None): | |
qst = req.get("question", "") | |
bqry, keywords = self.qryr.question(qst) | |
if req.get("kb_ids"): | |
bqry.filter.append(Q("terms", kb_id=req["kb_ids"])) | |
if req.get("doc_ids"): | |
bqry.filter.append(Q("terms", doc_id=req["doc_ids"])) | |
if "available_int" in req: | |
if req["available_int"] == 0: | |
bqry.filter.append(Q("range", available_int={"lt": 1})) | |
else: | |
bqry.filter.append( | |
Q("bool", must_not=Q("range", available_int={"lt": 1}))) | |
bqry.boost = 0.05 | |
s = Search() | |
pg = int(req.get("page", 1)) - 1 | |
ps = int(req.get("size", 1000)) | |
src = req.get("fields", ["docnm_kwd", "content_ltks", "kb_id", "img_id", | |
"image_id", "doc_id", "q_512_vec", "q_768_vec", | |
"q_1024_vec", "q_1536_vec", "available_int", "content_with_weight"]) | |
s = s.query(bqry)[pg * ps:(pg + 1) * ps] | |
s = s.highlight("content_ltks") | |
s = s.highlight("title_ltks") | |
if not qst: | |
s = s.sort( | |
{"create_time": {"order": "desc", "unmapped_type": "date"}}) | |
if qst: | |
s = s.highlight_options( | |
fragment_size=120, | |
number_of_fragments=5, | |
boundary_scanner_locale="zh-CN", | |
boundary_scanner="SENTENCE", | |
boundary_chars=",./;:\\!(),。?:!……()——、" | |
) | |
s = s.to_dict() | |
q_vec = [] | |
if req.get("vector"): | |
assert emb_mdl, "No embedding model selected" | |
s["knn"] = self._vector( | |
qst, emb_mdl, req.get( | |
"similarity", 0.4), ps) | |
s["knn"]["filter"] = bqry.to_dict() | |
if "highlight" in s: | |
del s["highlight"] | |
q_vec = s["knn"]["query_vector"] | |
es_logger.info("【Q】: {}".format(json.dumps(s))) | |
res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src) | |
es_logger.info("TOTAL: {}".format(self.es.getTotal(res))) | |
if self.es.getTotal(res) == 0 and "knn" in s: | |
bqry, _ = self.qryr.question(qst, min_match="10%") | |
if req.get("kb_ids"): | |
bqry.filter.append(Q("terms", kb_id=req["kb_ids"])) | |
s["query"] = bqry.to_dict() | |
s["knn"]["filter"] = bqry.to_dict() | |
s["knn"]["similarity"] = 0.7 | |
res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src) | |
kwds = set([]) | |
for k in keywords: | |
kwds.add(k) | |
for kk in huqie.qieqie(k).split(" "): | |
if len(kk) < 2: | |
continue | |
if kk in kwds: | |
continue | |
kwds.add(kk) | |
aggs = self.getAggregation(res, "docnm_kwd") | |
return self.SearchResult( | |
total=self.es.getTotal(res), | |
ids=self.es.getDocIds(res), | |
query_vector=q_vec, | |
aggregation=aggs, | |
highlight=self.getHighlight(res), | |
field=self.getFields(res, src), | |
keywords=list(kwds) | |
) | |
def getAggregation(self, res, g): | |
if not "aggregations" in res or "aggs_" + g not in res["aggregations"]: | |
return | |
bkts = res["aggregations"]["aggs_" + g]["buckets"] | |
return [(b["key"], b["doc_count"]) for b in bkts] | |
def getHighlight(self, res): | |
def rmspace(line): | |
eng = set(list("qwertyuioplkjhgfdsazxcvbnm")) | |
r = [] | |
for t in line.split(" "): | |
if not t: | |
continue | |
if len(r) > 0 and len( | |
t) > 0 and r[-1][-1] in eng and t[0] in eng: | |
r.append(" ") | |
r.append(t) | |
r = "".join(r) | |
return r | |
ans = {} | |
for d in res["hits"]["hits"]: | |
hlts = d.get("highlight") | |
if not hlts: | |
continue | |
ans[d["_id"]] = "".join([a for a in list(hlts.items())[0][1]]) | |
return ans | |
def getFields(self, sres, flds): | |
res = {} | |
if not flds: | |
return {} | |
for d in self.es.getSource(sres): | |
m = {n: d.get(n) for n in flds if d.get(n) is not None} | |
for n, v in m.items(): | |
if isinstance(v, type([])): | |
m[n] = "\t".join([str(vv) for vv in v]) | |
continue | |
if not isinstance(v, type("")): | |
m[n] = str(m[n]) | |
m[n] = rmSpace(m[n]) | |
if m: | |
res[d["id"]] = m | |
return res | |
def trans2floats(txt): | |
return [float(t) for t in txt.split("\t")] | |
def insert_citations(self, answer, chunks, chunk_v, | |
embd_mdl, tkweight=0.3, vtweight=0.7): | |
pieces = re.split(r"([;。?!!\n]|[a-z][.?;!][ \n])", answer) | |
for i in range(1, len(pieces)): | |
if re.match(r"[a-z][.?;!][ \n]", pieces[i]): | |
pieces[i - 1] += pieces[i][0] | |
pieces[i] = pieces[i][1:] | |
idx = [] | |
pieces_ = [] | |
for i, t in enumerate(pieces): | |
if len(t) < 5: | |
continue | |
idx.append(i) | |
pieces_.append(t) | |
es_logger.info("{} => {}".format(answer, pieces_)) | |
if not pieces_: | |
return answer | |
ans_v, _ = embd_mdl.encode(pieces_) | |
assert len(ans_v[0]) == len(chunk_v[0]), "The dimension of query and chunk do not match: {} vs. {}".format( | |
len(ans_v[0]), len(chunk_v[0])) | |
chunks_tks = [huqie.qie(ck).split(" ") for ck in chunks] | |
cites = {} | |
for i, a in enumerate(pieces_): | |
sim, tksim, vtsim = self.qryr.hybrid_similarity(ans_v[i], | |
chunk_v, | |
huqie.qie( | |
pieces_[i]).split(" "), | |
chunks_tks, | |
tkweight, vtweight) | |
mx = np.max(sim) * 0.99 | |
if mx < 0.55: | |
continue | |
cites[idx[i]] = list( | |
set([str(i) for i in range(len(chunk_v)) if sim[i] > mx]))[:4] | |
res = "" | |
for i, p in enumerate(pieces): | |
res += p | |
if i not in idx: | |
continue | |
if i not in cites: | |
continue | |
res += "##%s$$" % "$".join(cites[i]) | |
return res | |
def rerank(self, sres, query, tkweight=0.3, | |
vtweight=0.7, cfield="content_ltks"): | |
ins_embd = [ | |
Dealer.trans2floats( | |
sres.field[i].get("q_%d_vec" % len(sres.query_vector), "\t".join(["0"] * len(sres.query_vector)))) for i in sres.ids] | |
if not ins_embd: | |
return [], [], [] | |
ins_tw = [sres.field[i][cfield].split(" ") | |
for i in sres.ids] | |
sim, tksim, vtsim = self.qryr.hybrid_similarity(sres.query_vector, | |
ins_embd, | |
huqie.qie( | |
query).split(" "), | |
ins_tw, tkweight, vtweight) | |
return sim, tksim, vtsim | |
def hybrid_similarity(self, ans_embd, ins_embd, ans, inst): | |
return self.qryr.hybrid_similarity(ans_embd, | |
ins_embd, | |
huqie.qie(ans).split(" "), | |
huqie.qie(inst).split(" ")) | |
def retrieval(self, question, embd_mdl, tenant_id, kb_ids, page, page_size, similarity_threshold=0.2, | |
vector_similarity_weight=0.3, top=1024, doc_ids=None, aggs=True): | |
ranks = {"total": 0, "chunks": [], "doc_aggs": {}} | |
if not question: | |
return ranks | |
req = {"kb_ids": kb_ids, "doc_ids": doc_ids, "size": top, | |
"question": question, "vector": True, | |
"similarity": similarity_threshold} | |
sres = self.search(req, index_name(tenant_id), embd_mdl) | |
sim, tsim, vsim = self.rerank( | |
sres, question, 1 - vector_similarity_weight, vector_similarity_weight) | |
idx = np.argsort(sim * -1) | |
dim = len(sres.query_vector) | |
start_idx = (page - 1) * page_size | |
for i in idx: | |
ranks["total"] += 1 | |
if sim[i] < similarity_threshold: | |
break | |
start_idx -= 1 | |
if start_idx >= 0: | |
continue | |
if len(ranks["chunks"]) == page_size: | |
if aggs: | |
continue | |
break | |
id = sres.ids[i] | |
dnm = sres.field[id]["docnm_kwd"] | |
d = { | |
"chunk_id": id, | |
"content_ltks": sres.field[id]["content_ltks"], | |
"content_with_weight": sres.field[id]["content_with_weight"], | |
"doc_id": sres.field[id]["doc_id"], | |
"docnm_kwd": dnm, | |
"kb_id": sres.field[id]["kb_id"], | |
"important_kwd": sres.field[id].get("important_kwd", []), | |
"img_id": sres.field[id].get("img_id", ""), | |
"similarity": sim[i], | |
"vector_similarity": vsim[i], | |
"term_similarity": tsim[i], | |
"vector": self.trans2floats(sres.field[id].get("q_%d_vec" % dim, "\t".join(["0"] * dim))) | |
} | |
ranks["chunks"].append(d) | |
if dnm not in ranks["doc_aggs"]: | |
ranks["doc_aggs"][dnm] = 0 | |
ranks["doc_aggs"][dnm] += 1 | |
return ranks | |