|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import List |
|
|
|
import requests |
|
|
|
from .modules.assistant import Assistant |
|
from .modules.dataset import DataSet |
|
from .modules.document import Document |
|
from .modules.chunk import Chunk |
|
|
|
|
|
class RAGFlow: |
|
def __init__(self, user_key, base_url, version='v1'): |
|
""" |
|
api_url: http://<host_address>/api/v1 |
|
""" |
|
self.user_key = user_key |
|
self.api_url = f"{base_url}/api/{version}" |
|
self.authorization_header = {"Authorization": "{} {}".format("Bearer", self.user_key)} |
|
|
|
def post(self, path, param, stream=False): |
|
res = requests.post(url=self.api_url + path, json=param, headers=self.authorization_header, stream=stream) |
|
return res |
|
|
|
def get(self, path, params=None): |
|
res = requests.get(url=self.api_url + path, params=params, headers=self.authorization_header) |
|
return res |
|
|
|
def delete(self, path, params): |
|
res = requests.delete(url=self.api_url + path, params=params, headers=self.authorization_header) |
|
return res |
|
|
|
def create_dataset(self, name: str, avatar: str = "", description: str = "", language: str = "English", |
|
permission: str = "me", |
|
document_count: int = 0, chunk_count: int = 0, parse_method: str = "naive", |
|
parser_config: DataSet.ParserConfig = None) -> DataSet: |
|
if parser_config is None: |
|
parser_config = DataSet.ParserConfig(self, {"chunk_token_count": 128, "layout_recognize": True, |
|
"delimiter": "\n!?。;!?", "task_page_size": 12}) |
|
parser_config = parser_config.to_json() |
|
res = self.post("/dataset/save", |
|
{"name": name, "avatar": avatar, "description": description, "language": language, |
|
"permission": permission, |
|
"document_count": document_count, "chunk_count": chunk_count, "parse_method": parse_method, |
|
"parser_config": parser_config |
|
} |
|
) |
|
res = res.json() |
|
if res.get("retmsg") == "success": |
|
return DataSet(self, res["data"]) |
|
raise Exception(res["retmsg"]) |
|
|
|
def list_datasets(self, page: int = 1, page_size: int = 1024, orderby: str = "create_time", desc: bool = True) -> \ |
|
List[DataSet]: |
|
res = self.get("/dataset/list", {"page": page, "page_size": page_size, "orderby": orderby, "desc": desc}) |
|
res = res.json() |
|
result_list = [] |
|
if res.get("retmsg") == "success": |
|
for data in res['data']: |
|
result_list.append(DataSet(self, data)) |
|
return result_list |
|
raise Exception(res["retmsg"]) |
|
|
|
def get_dataset(self, id: str = None, name: str = None) -> DataSet: |
|
res = self.get("/dataset/detail", {"id": id, "name": name}) |
|
res = res.json() |
|
if res.get("retmsg") == "success": |
|
return DataSet(self, res['data']) |
|
raise Exception(res["retmsg"]) |
|
|
|
def create_assistant(self, name: str = "assistant", avatar: str = "path", knowledgebases: List[DataSet] = [], |
|
llm: Assistant.LLM = None, prompt: Assistant.Prompt = None) -> Assistant: |
|
datasets = [] |
|
for dataset in knowledgebases: |
|
datasets.append(dataset.to_json()) |
|
|
|
if llm is None: |
|
llm = Assistant.LLM(self, {"model_name": None, |
|
"temperature": 0.1, |
|
"top_p": 0.3, |
|
"presence_penalty": 0.4, |
|
"frequency_penalty": 0.7, |
|
"max_tokens": 512, }) |
|
if prompt is None: |
|
prompt = Assistant.Prompt(self, {"similarity_threshold": 0.2, |
|
"keywords_similarity_weight": 0.7, |
|
"top_n": 8, |
|
"variables": [{ |
|
"key": "knowledge", |
|
"optional": True |
|
}], "rerank_model": "", |
|
"empty_response": None, |
|
"opener": None, |
|
"show_quote": True, |
|
"prompt": None}) |
|
if prompt.opener is None: |
|
prompt.opener = "Hi! I'm your assistant, what can I do for you?" |
|
if prompt.prompt is None: |
|
prompt.prompt = ( |
|
"You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. " |
|
"Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, " |
|
"your answer must include the sentence 'The answer you are looking for is not found in the knowledge base!' " |
|
"Answers need to consider chat history.\nHere is the knowledge base:\n{knowledge}\nThe above is the knowledge base." |
|
) |
|
|
|
temp_dict = {"name": name, |
|
"avatar": avatar, |
|
"knowledgebases": datasets, |
|
"llm": llm.to_json(), |
|
"prompt": prompt.to_json()} |
|
res = self.post("/assistant/save", temp_dict) |
|
res = res.json() |
|
if res.get("retmsg") == "success": |
|
return Assistant(self, res["data"]) |
|
raise Exception(res["retmsg"]) |
|
|
|
def get_assistant(self, id: str = None, name: str = None) -> Assistant: |
|
res = self.get("/assistant/get", {"id": id, "name": name}) |
|
res = res.json() |
|
if res.get("retmsg") == "success": |
|
return Assistant(self, res['data']) |
|
raise Exception(res["retmsg"]) |
|
|
|
def list_assistants(self) -> List[Assistant]: |
|
res = self.get("/assistant/list") |
|
res = res.json() |
|
result_list = [] |
|
if res.get("retmsg") == "success": |
|
for data in res['data']: |
|
result_list.append(Assistant(self, data)) |
|
return result_list |
|
raise Exception(res["retmsg"]) |
|
|
|
def create_document(self, ds: DataSet, name: str, blob: bytes) -> bool: |
|
url = f"/doc/dataset/{ds.id}/documents/upload" |
|
files = { |
|
'file': (name, blob) |
|
} |
|
headers = { |
|
'Authorization': f"Bearer {ds.rag.user_key}" |
|
} |
|
|
|
response = requests.post(self.api_url + url, files=files, |
|
headers=headers) |
|
|
|
if response.status_code == 200 and response.json().get('retmsg') == 'success': |
|
return True |
|
else: |
|
raise Exception(f"Upload failed: {response.json().get('retmsg')}") |
|
|
|
return False |
|
|
|
def get_document(self, id: str = None, name: str = None) -> Document: |
|
res = self.get("/doc/infos", {"id": id, "name": name}) |
|
res = res.json() |
|
if res.get("retmsg") == "success": |
|
return Document(self, res['data']) |
|
raise Exception(res["retmsg"]) |
|
|
|
def async_parse_documents(self, doc_ids): |
|
""" |
|
Asynchronously start parsing multiple documents without waiting for completion. |
|
|
|
:param doc_ids: A list containing multiple document IDs. |
|
""" |
|
try: |
|
if not doc_ids or not isinstance(doc_ids, list): |
|
raise ValueError("doc_ids must be a non-empty list of document IDs") |
|
|
|
data = {"document_ids": doc_ids, "run": 1} |
|
|
|
res = self.post(f'/doc/run', data) |
|
|
|
if res.status_code != 200: |
|
raise Exception(f"Failed to start async parsing for documents: {res.text}") |
|
|
|
print(f"Async parsing started successfully for documents: {doc_ids}") |
|
|
|
except Exception as e: |
|
print(f"Error occurred during async parsing for documents: {str(e)}") |
|
raise |
|
|
|
def async_cancel_parse_documents(self, doc_ids): |
|
""" |
|
Cancel the asynchronous parsing of multiple documents. |
|
|
|
:param doc_ids: A list containing multiple document IDs. |
|
""" |
|
try: |
|
if not doc_ids or not isinstance(doc_ids, list): |
|
raise ValueError("doc_ids must be a non-empty list of document IDs") |
|
data = {"document_ids": doc_ids, "run": 2} |
|
res = self.post(f'/doc/run', data) |
|
|
|
if res.status_code != 200: |
|
raise Exception(f"Failed to cancel async parsing for documents: {res.text}") |
|
|
|
print(f"Async parsing canceled successfully for documents: {doc_ids}") |
|
|
|
except Exception as e: |
|
print(f"Error occurred during canceling parsing for documents: {str(e)}") |
|
raise |
|
|
|
def retrieval(self, |
|
question, |
|
datasets=None, |
|
documents=None, |
|
offset=0, |
|
limit=6, |
|
similarity_threshold=0.1, |
|
vector_similarity_weight=0.3, |
|
top_k=1024): |
|
""" |
|
Perform document retrieval based on the given parameters. |
|
|
|
:param question: The query question. |
|
:param datasets: A list of datasets (optional, as documents may be provided directly). |
|
:param documents: A list of documents (if specific documents are provided). |
|
:param offset: Offset for the retrieval results. |
|
:param limit: Maximum number of retrieval results. |
|
:param similarity_threshold: Similarity threshold. |
|
:param vector_similarity_weight: Weight of vector similarity. |
|
:param top_k: Number of top most similar documents to consider (for pre-filtering or ranking). |
|
|
|
Note: This is a hypothetical implementation and may need adjustments based on the actual backend service API. |
|
""" |
|
try: |
|
data = { |
|
"question": question, |
|
"datasets": datasets if datasets is not None else [], |
|
"documents": [doc.id if hasattr(doc, 'id') else doc for doc in |
|
documents] if documents is not None else [], |
|
"offset": offset, |
|
"limit": limit, |
|
"similarity_threshold": similarity_threshold, |
|
"vector_similarity_weight": vector_similarity_weight, |
|
"top_k": top_k, |
|
"knowledgebase_id": datasets, |
|
} |
|
|
|
|
|
res = self.post(f'/doc/retrieval_test', data) |
|
|
|
|
|
if res.status_code == 200: |
|
res_data = res.json() |
|
if res_data.get("retmsg") == "success": |
|
chunks = [] |
|
for chunk_data in res_data["data"].get("chunks", []): |
|
chunk = Chunk(self, chunk_data) |
|
chunks.append(chunk) |
|
return chunks |
|
else: |
|
raise Exception(f"Error fetching chunks: {res_data.get('retmsg')}") |
|
else: |
|
raise Exception(f"API request failed with status code {res.status_code}") |
|
|
|
except Exception as e: |
|
print(f"An error occurred during retrieval: {e}") |
|
raise |
|
|
|
|