0000sir
Fix keys of Xinference deployed models, especially has the same model name with public hosted models. (#2832)
13b2570
# | |
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
import requests | |
from openai.lib.azure import AzureOpenAI | |
from zhipuai import ZhipuAI | |
import io | |
from abc import ABC | |
from ollama import Client | |
from openai import OpenAI | |
import os | |
import json | |
from rag.utils import num_tokens_from_string | |
import base64 | |
import re | |
class Base(ABC): | |
def __init__(self, key, model_name): | |
pass | |
def transcription(self, audio, **kwargs): | |
transcription = self.client.audio.transcriptions.create( | |
model=self.model_name, | |
file=audio, | |
response_format="text" | |
) | |
return transcription.text.strip(), num_tokens_from_string(transcription.text.strip()) | |
def audio2base64(self, audio): | |
if isinstance(audio, bytes): | |
return base64.b64encode(audio).decode("utf-8") | |
if isinstance(audio, io.BytesIO): | |
return base64.b64encode(audio.getvalue()).decode("utf-8") | |
raise TypeError("The input audio file should be in binary format.") | |
class GPTSeq2txt(Base): | |
def __init__(self, key, model_name="whisper-1", base_url="https://api.openai.com/v1"): | |
if not base_url: base_url = "https://api.openai.com/v1" | |
self.client = OpenAI(api_key=key, base_url=base_url) | |
self.model_name = model_name | |
class QWenSeq2txt(Base): | |
def __init__(self, key, model_name="paraformer-realtime-8k-v1", **kwargs): | |
import dashscope | |
dashscope.api_key = key | |
self.model_name = model_name | |
def transcription(self, audio, format): | |
from http import HTTPStatus | |
from dashscope.audio.asr import Recognition | |
recognition = Recognition(model=self.model_name, | |
format=format, | |
sample_rate=16000, | |
callback=None) | |
result = recognition.call(audio) | |
ans = "" | |
if result.status_code == HTTPStatus.OK: | |
for sentence in result.get_sentence(): | |
ans += sentence.text.decode('utf-8') + '\n' | |
return ans, num_tokens_from_string(ans) | |
return "**ERROR**: " + result.message, 0 | |
class AzureSeq2txt(Base): | |
def __init__(self, key, model_name, lang="Chinese", **kwargs): | |
self.client = AzureOpenAI(api_key=key, azure_endpoint=kwargs["base_url"], api_version="2024-02-01") | |
self.model_name = model_name | |
self.lang = lang | |
class XinferenceSeq2txt(Base): | |
def __init__(self,key,model_name="whisper-small",**kwargs): | |
self.base_url = kwargs.get('base_url', None) | |
self.model_name = model_name | |
self.key = key | |
def transcription(self, audio, language="zh", prompt=None, response_format="json", temperature=0.7): | |
if isinstance(audio, str): | |
audio_file = open(audio, 'rb') | |
audio_data = audio_file.read() | |
audio_file_name = audio.split("/")[-1] | |
else: | |
audio_data = audio | |
audio_file_name = "audio.wav" | |
payload = { | |
"model": self.model_name, | |
"language": language, | |
"prompt": prompt, | |
"response_format": response_format, | |
"temperature": temperature | |
} | |
files = { | |
"file": (audio_file_name, audio_data, 'audio/wav') | |
} | |
try: | |
response = requests.post( | |
f"{self.base_url}/v1/audio/transcriptions", | |
files=files, | |
data=payload | |
) | |
response.raise_for_status() | |
result = response.json() | |
if 'text' in result: | |
transcription_text = result['text'].strip() | |
return transcription_text, num_tokens_from_string(transcription_text) | |
else: | |
return "**ERROR**: Failed to retrieve transcription.", 0 | |
except requests.exceptions.RequestException as e: | |
return f"**ERROR**: {str(e)}", 0 | |
class TencentCloudSeq2txt(Base): | |
def __init__( | |
self, key, model_name="16k_zh", base_url="https://asr.tencentcloudapi.com" | |
): | |
from tencentcloud.common import credential | |
from tencentcloud.asr.v20190614 import asr_client | |
key = json.loads(key) | |
sid = key.get("tencent_cloud_sid", "") | |
sk = key.get("tencent_cloud_sk", "") | |
cred = credential.Credential(sid, sk) | |
self.client = asr_client.AsrClient(cred, "") | |
self.model_name = model_name | |
def transcription(self, audio, max_retries=60, retry_interval=5): | |
from tencentcloud.common.exception.tencent_cloud_sdk_exception import ( | |
TencentCloudSDKException, | |
) | |
from tencentcloud.asr.v20190614 import models | |
import time | |
b64 = self.audio2base64(audio) | |
try: | |
# dispatch disk | |
req = models.CreateRecTaskRequest() | |
params = { | |
"EngineModelType": self.model_name, | |
"ChannelNum": 1, | |
"ResTextFormat": 0, | |
"SourceType": 1, | |
"Data": b64, | |
} | |
req.from_json_string(json.dumps(params)) | |
resp = self.client.CreateRecTask(req) | |
# loop query | |
req = models.DescribeTaskStatusRequest() | |
params = {"TaskId": resp.Data.TaskId} | |
req.from_json_string(json.dumps(params)) | |
retries = 0 | |
while retries < max_retries: | |
resp = self.client.DescribeTaskStatus(req) | |
if resp.Data.StatusStr == "success": | |
text = re.sub( | |
r"\[\d+:\d+\.\d+,\d+:\d+\.\d+\]\s*", "", resp.Data.Result | |
).strip() | |
return text, num_tokens_from_string(text) | |
elif resp.Data.StatusStr == "failed": | |
return ( | |
"**ERROR**: Failed to retrieve speech recognition results.", | |
0, | |
) | |
else: | |
time.sleep(retry_interval) | |
retries += 1 | |
return "**ERROR**: Max retries exceeded. Task may still be processing.", 0 | |
except TencentCloudSDKException as e: | |
return "**ERROR**: " + str(e), 0 | |
except Exception as e: | |
return "**ERROR**: " + str(e), 0 | |