ragflow / api /apps /conversation_app.py
KevinHuSh
refine admin initialization (#75)
4c52eb9
raw
history blame
11.6 kB
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import re
from flask import request
from flask_login import login_required
from api.db.services.dialog_service import DialogService, ConversationService
from api.db import LLMType
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMService, LLMBundle
from api.settings import access_logger, stat_logger, retrievaler
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
from api.utils import get_uuid
from api.utils.api_utils import get_json_result
from rag.app.resume import forbidden_select_fields4resume
from rag.nlp.search import index_name
from rag.utils import num_tokens_from_string, encoder, rmSpace
@manager.route('/set', methods=['POST'])
@login_required
def set_conversation():
req = request.json
conv_id = req.get("conversation_id")
if conv_id:
del req["conversation_id"]
try:
if not ConversationService.update_by_id(conv_id, req):
return get_data_error_result(retmsg="Conversation not found!")
e, conv = ConversationService.get_by_id(conv_id)
if not e:
return get_data_error_result(
retmsg="Fail to update a conversation!")
conv = conv.to_dict()
return get_json_result(data=conv)
except Exception as e:
return server_error_response(e)
try:
e, dia = DialogService.get_by_id(req["dialog_id"])
if not e:
return get_data_error_result(retmsg="Dialog not found")
conv = {
"id": get_uuid(),
"dialog_id": req["dialog_id"],
"name": req.get("name", "New conversation"),
"message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}]
}
ConversationService.save(**conv)
e, conv = ConversationService.get_by_id(conv["id"])
if not e:
return get_data_error_result(retmsg="Fail to new a conversation!")
conv = conv.to_dict()
return get_json_result(data=conv)
except Exception as e:
return server_error_response(e)
@manager.route('/get', methods=['GET'])
@login_required
def get():
conv_id = request.args["conversation_id"]
try:
e, conv = ConversationService.get_by_id(conv_id)
if not e:
return get_data_error_result(retmsg="Conversation not found!")
conv = conv.to_dict()
return get_json_result(data=conv)
except Exception as e:
return server_error_response(e)
@manager.route('/rm', methods=['POST'])
@login_required
def rm():
conv_ids = request.json["conversation_ids"]
try:
for cid in conv_ids:
ConversationService.delete_by_id(cid)
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)
@manager.route('/list', methods=['GET'])
@login_required
def list_convsersation():
dialog_id = request.args["dialog_id"]
try:
convs = ConversationService.query(dialog_id=dialog_id, order_by=ConversationService.model.create_time, reverse=True)
convs = [d.to_dict() for d in convs]
return get_json_result(data=convs)
except Exception as e:
return server_error_response(e)
def message_fit_in(msg, max_length=4000):
def count():
nonlocal msg
tks_cnts = []
for m in msg: tks_cnts.append({"role": m["role"], "count": num_tokens_from_string(m["content"])})
total = 0
for m in tks_cnts: total += m["count"]
return total
c = count()
if c < max_length: return c, msg
msg = [m for m in msg if m.role in ["system", "user"]]
c = count()
if c < max_length: return c, msg
msg_ = [m for m in msg[:-1] if m.role == "system"]
msg_.append(msg[-1])
msg = msg_
c = count()
if c < max_length: return c, msg
ll = num_tokens_from_string(msg_[0].content)
l = num_tokens_from_string(msg_[-1].content)
if ll / (ll + l) > 0.8:
m = msg_[0].content
m = encoder.decode(encoder.encode(m)[:max_length - l])
msg[0].content = m
return max_length, msg
m = msg_[1].content
m = encoder.decode(encoder.encode(m)[:max_length - l])
msg[1].content = m
return max_length, msg
@manager.route('/completion', methods=['POST'])
@login_required
@validate_request("conversation_id", "messages")
def completion():
req = request.json
msg = []
for m in req["messages"]:
if m["role"] == "system": continue
if m["role"] == "assistant" and not msg: continue
msg.append({"role": m["role"], "content": m["content"]})
try:
e, conv = ConversationService.get_by_id(req["conversation_id"])
if not e:
return get_data_error_result(retmsg="Conversation not found!")
conv.message.append(msg[-1])
e, dia = DialogService.get_by_id(conv.dialog_id)
if not e:
return get_data_error_result(retmsg="Dialog not found!")
del req["conversation_id"]
del req["messages"]
ans = chat(dia, msg, **req)
if not conv.reference: conv.reference = []
conv.reference.append(ans["reference"])
conv.message.append({"role": "assistant", "content": ans["answer"]})
ConversationService.update_by_id(conv.id, conv.to_dict())
return get_json_result(data=ans)
except Exception as e:
return server_error_response(e)
def chat(dialog, messages, **kwargs):
assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
llm = LLMService.query(llm_name=dialog.llm_id)
if not llm:
raise LookupError("LLM(%s) not found" % dialog.llm_id)
llm = llm[0]
question = messages[-1]["content"]
embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING)
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
field_map = KnowledgebaseService.get_field_map(dialog.kb_ids)
## try to use sql if field mapping is good to go
if field_map:
stat_logger.info("Use SQL to retrieval.")
markdown_tbl, chunks = use_sql(question, field_map, dialog.tenant_id, chat_mdl)
if markdown_tbl:
return {"answer": markdown_tbl, "retrieval": {"chunks": chunks}}
prompt_config = dialog.prompt_config
for p in prompt_config["parameters"]:
if p["key"] == "knowledge": continue
if p["key"] not in kwargs and not p["optional"]: raise KeyError("Miss parameter: " + p["key"])
if p["key"] not in kwargs:
prompt_config["system"] = prompt_config["system"].replace("{%s}" % p["key"], " ")
kbinfos = retrievaler.retrieval(question, embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
dialog.similarity_threshold,
dialog.vector_similarity_weight, top=1024, aggs=False)
knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
if not knowledges and prompt_config.get("empty_response"):
return {"answer": prompt_config["empty_response"], "reference": kbinfos}
kwargs["knowledge"] = "\n".join(knowledges)
gen_conf = dialog.llm_setting
msg = [{"role": m["role"], "content": m["content"]} for m in messages if m["role"] != "system"]
used_token_count, msg = message_fit_in(msg, int(llm.max_tokens * 0.97))
if "max_tokens" in gen_conf:
gen_conf["max_tokens"] = min(gen_conf["max_tokens"], llm.max_tokens - used_token_count)
answer = chat_mdl.chat(prompt_config["system"].format(**kwargs), msg, gen_conf)
if knowledges:
answer = retrievaler.insert_citations(answer,
[ck["content_ltks"] for ck in kbinfos["chunks"]],
[ck["vector"] for ck in kbinfos["chunks"]],
embd_mdl,
tkweight=1 - dialog.vector_similarity_weight,
vtweight=dialog.vector_similarity_weight)
for c in kbinfos["chunks"]:
if c.get("vector"): del c["vector"]
return {"answer": answer, "reference": kbinfos}
def use_sql(question, field_map, tenant_id, chat_mdl):
sys_prompt = "你是一个DBA。你需要这对以下表的字段结构,根据我的问题写出sql。"
user_promt = """
表名:{};
数据库表字段说明如下:
{}
问题:{}
请写出SQL,且只要SQL,不要有其他说明及文字。
""".format(
index_name(tenant_id),
"\n".join([f"{k}: {v}" for k, v in field_map.items()]),
question
)
sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_promt}], {"temperature": 0.06})
stat_logger.info(f"“{question}” get SQL: {sql}")
sql = re.sub(r"[\r\n]+", " ", sql.lower())
sql = re.sub(r".*?select ", "select ", sql.lower())
sql = re.sub(r" +", " ", sql)
sql = re.sub(r"([;;]|```).*", "", sql)
if sql[:len("select ")] != "select ":
return None, None
if sql[:len("select *")] != "select *":
sql = "select doc_id,docnm_kwd," + sql[6:]
else:
flds = []
for k in field_map.keys():
if k in forbidden_select_fields4resume:continue
if len(flds) > 11:break
flds.append(k)
sql = "select doc_id,docnm_kwd," + ",".join(flds) + sql[8:]
stat_logger.info(f"“{question}” get SQL(refined): {sql}")
tbl = retrievaler.sql_retrieval(sql, format="json")
if not tbl or len(tbl["rows"]) == 0: return None, None
docid_idx = set([ii for ii, c in enumerate(tbl["columns"]) if c["name"] == "doc_id"])
docnm_idx = set([ii for ii, c in enumerate(tbl["columns"]) if c["name"] == "docnm_kwd"])
clmn_idx = [ii for ii in range(len(tbl["columns"])) if ii not in (docid_idx | docnm_idx)]
# compose markdown table
clmns = "|".join([re.sub(r"(/.*|([^()]+))", "", field_map.get(tbl["columns"][i]["name"], f"C{i}")) for i in clmn_idx]) + "|原文"
line = "|".join(["------" for _ in range(len(clmn_idx))]) + "|------"
rows = ["|".join([rmSpace(str(r[i])) for i in clmn_idx]).replace("None", " ") + "|" for r in tbl["rows"]]
if not docid_idx or not docnm_idx:
access_logger.error("SQL missing field: " + sql)
return "\n".join([clmns, line, "\n".join(rows)]), []
rows = "\n".join([r + f"##{ii}$$" for ii, r in enumerate(rows)])
docid_idx = list(docid_idx)[0]
docnm_idx = list(docnm_idx)[0]
return "\n".join([clmns, line, rows]), [{"doc_id": r[docid_idx], "docnm_kwd": r[docnm_idx]} for r in tbl["rows"]]