|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import re
|
|
|
|
from flask import request
|
|
from flask_login import login_required
|
|
from api.db.services.dialog_service import DialogService, ConversationService
|
|
from api.db import LLMType
|
|
from api.db.services.knowledgebase_service import KnowledgebaseService
|
|
from api.db.services.llm_service import LLMService, LLMBundle
|
|
from api.settings import access_logger, stat_logger, retrievaler
|
|
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
|
|
from api.utils import get_uuid
|
|
from api.utils.api_utils import get_json_result
|
|
from rag.app.resume import forbidden_select_fields4resume
|
|
from rag.nlp.search import index_name
|
|
from rag.utils import num_tokens_from_string, encoder, rmSpace
|
|
|
|
|
|
@manager.route('/set', methods=['POST'])
|
|
@login_required
|
|
def set_conversation():
|
|
req = request.json
|
|
conv_id = req.get("conversation_id")
|
|
if conv_id:
|
|
del req["conversation_id"]
|
|
try:
|
|
if not ConversationService.update_by_id(conv_id, req):
|
|
return get_data_error_result(retmsg="Conversation not found!")
|
|
e, conv = ConversationService.get_by_id(conv_id)
|
|
if not e:
|
|
return get_data_error_result(
|
|
retmsg="Fail to update a conversation!")
|
|
conv = conv.to_dict()
|
|
return get_json_result(data=conv)
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
try:
|
|
e, dia = DialogService.get_by_id(req["dialog_id"])
|
|
if not e:
|
|
return get_data_error_result(retmsg="Dialog not found")
|
|
conv = {
|
|
"id": get_uuid(),
|
|
"dialog_id": req["dialog_id"],
|
|
"name": req.get("name", "New conversation"),
|
|
"message": [{"role": "assistant", "content": dia.prompt_config["prologue"]}]
|
|
}
|
|
ConversationService.save(**conv)
|
|
e, conv = ConversationService.get_by_id(conv["id"])
|
|
if not e:
|
|
return get_data_error_result(retmsg="Fail to new a conversation!")
|
|
conv = conv.to_dict()
|
|
return get_json_result(data=conv)
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route('/get', methods=['GET'])
|
|
@login_required
|
|
def get():
|
|
conv_id = request.args["conversation_id"]
|
|
try:
|
|
e, conv = ConversationService.get_by_id(conv_id)
|
|
if not e:
|
|
return get_data_error_result(retmsg="Conversation not found!")
|
|
conv = conv.to_dict()
|
|
return get_json_result(data=conv)
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route('/rm', methods=['POST'])
|
|
@login_required
|
|
def rm():
|
|
conv_ids = request.json["conversation_ids"]
|
|
try:
|
|
for cid in conv_ids:
|
|
ConversationService.delete_by_id(cid)
|
|
return get_json_result(data=True)
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route('/list', methods=['GET'])
|
|
@login_required
|
|
def list_convsersation():
|
|
dialog_id = request.args["dialog_id"]
|
|
try:
|
|
convs = ConversationService.query(dialog_id=dialog_id, order_by=ConversationService.model.create_time, reverse=True)
|
|
convs = [d.to_dict() for d in convs]
|
|
return get_json_result(data=convs)
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
|
|
def message_fit_in(msg, max_length=4000):
|
|
def count():
|
|
nonlocal msg
|
|
tks_cnts = []
|
|
for m in msg: tks_cnts.append({"role": m["role"], "count": num_tokens_from_string(m["content"])})
|
|
total = 0
|
|
for m in tks_cnts: total += m["count"]
|
|
return total
|
|
|
|
c = count()
|
|
if c < max_length: return c, msg
|
|
msg = [m for m in msg if m.role in ["system", "user"]]
|
|
c = count()
|
|
if c < max_length: return c, msg
|
|
msg_ = [m for m in msg[:-1] if m.role == "system"]
|
|
msg_.append(msg[-1])
|
|
msg = msg_
|
|
c = count()
|
|
if c < max_length: return c, msg
|
|
ll = num_tokens_from_string(msg_[0].content)
|
|
l = num_tokens_from_string(msg_[-1].content)
|
|
if ll / (ll + l) > 0.8:
|
|
m = msg_[0].content
|
|
m = encoder.decode(encoder.encode(m)[:max_length - l])
|
|
msg[0].content = m
|
|
return max_length, msg
|
|
|
|
m = msg_[1].content
|
|
m = encoder.decode(encoder.encode(m)[:max_length - l])
|
|
msg[1].content = m
|
|
return max_length, msg
|
|
|
|
|
|
@manager.route('/completion', methods=['POST'])
|
|
@login_required
|
|
@validate_request("conversation_id", "messages")
|
|
def completion():
|
|
req = request.json
|
|
msg = []
|
|
for m in req["messages"]:
|
|
if m["role"] == "system": continue
|
|
if m["role"] == "assistant" and not msg: continue
|
|
msg.append({"role": m["role"], "content": m["content"]})
|
|
try:
|
|
e, conv = ConversationService.get_by_id(req["conversation_id"])
|
|
if not e:
|
|
return get_data_error_result(retmsg="Conversation not found!")
|
|
conv.message.append(msg[-1])
|
|
e, dia = DialogService.get_by_id(conv.dialog_id)
|
|
if not e:
|
|
return get_data_error_result(retmsg="Dialog not found!")
|
|
del req["conversation_id"]
|
|
del req["messages"]
|
|
ans = chat(dia, msg, **req)
|
|
if not conv.reference: conv.reference = []
|
|
conv.reference.append(ans["reference"])
|
|
conv.message.append({"role": "assistant", "content": ans["answer"]})
|
|
ConversationService.update_by_id(conv.id, conv.to_dict())
|
|
return get_json_result(data=ans)
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
|
|
def chat(dialog, messages, **kwargs):
|
|
assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
|
|
llm = LLMService.query(llm_name=dialog.llm_id)
|
|
if not llm:
|
|
raise LookupError("LLM(%s) not found" % dialog.llm_id)
|
|
llm = llm[0]
|
|
question = messages[-1]["content"]
|
|
embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING)
|
|
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
|
|
|
|
field_map = KnowledgebaseService.get_field_map(dialog.kb_ids)
|
|
|
|
if field_map:
|
|
stat_logger.info("Use SQL to retrieval.")
|
|
markdown_tbl, chunks = use_sql(question, field_map, dialog.tenant_id, chat_mdl)
|
|
if markdown_tbl:
|
|
return {"answer": markdown_tbl, "retrieval": {"chunks": chunks}}
|
|
|
|
prompt_config = dialog.prompt_config
|
|
for p in prompt_config["parameters"]:
|
|
if p["key"] == "knowledge": continue
|
|
if p["key"] not in kwargs and not p["optional"]: raise KeyError("Miss parameter: " + p["key"])
|
|
if p["key"] not in kwargs:
|
|
prompt_config["system"] = prompt_config["system"].replace("{%s}" % p["key"], " ")
|
|
|
|
kbinfos = retrievaler.retrieval(question, embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
|
|
dialog.similarity_threshold,
|
|
dialog.vector_similarity_weight, top=1024, aggs=False)
|
|
knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
|
|
|
|
if not knowledges and prompt_config.get("empty_response"):
|
|
return {"answer": prompt_config["empty_response"], "reference": kbinfos}
|
|
|
|
kwargs["knowledge"] = "\n".join(knowledges)
|
|
gen_conf = dialog.llm_setting
|
|
msg = [{"role": m["role"], "content": m["content"]} for m in messages if m["role"] != "system"]
|
|
used_token_count, msg = message_fit_in(msg, int(llm.max_tokens * 0.97))
|
|
if "max_tokens" in gen_conf:
|
|
gen_conf["max_tokens"] = min(gen_conf["max_tokens"], llm.max_tokens - used_token_count)
|
|
answer = chat_mdl.chat(prompt_config["system"].format(**kwargs), msg, gen_conf)
|
|
|
|
if knowledges:
|
|
answer = retrievaler.insert_citations(answer,
|
|
[ck["content_ltks"] for ck in kbinfos["chunks"]],
|
|
[ck["vector"] for ck in kbinfos["chunks"]],
|
|
embd_mdl,
|
|
tkweight=1 - dialog.vector_similarity_weight,
|
|
vtweight=dialog.vector_similarity_weight)
|
|
for c in kbinfos["chunks"]:
|
|
if c.get("vector"): del c["vector"]
|
|
return {"answer": answer, "reference": kbinfos}
|
|
|
|
|
|
def use_sql(question, field_map, tenant_id, chat_mdl):
|
|
sys_prompt = "你是一个DBA。你需要这对以下表的字段结构,根据我的问题写出sql。"
|
|
user_promt = """
|
|
表名:{};
|
|
数据库表字段说明如下:
|
|
{}
|
|
|
|
问题:{}
|
|
请写出SQL,且只要SQL,不要有其他说明及文字。
|
|
""".format(
|
|
index_name(tenant_id),
|
|
"\n".join([f"{k}: {v}" for k, v in field_map.items()]),
|
|
question
|
|
)
|
|
sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_promt}], {"temperature": 0.06})
|
|
stat_logger.info(f"“{question}” get SQL: {sql}")
|
|
sql = re.sub(r"[\r\n]+", " ", sql.lower())
|
|
sql = re.sub(r".*?select ", "select ", sql.lower())
|
|
sql = re.sub(r" +", " ", sql)
|
|
sql = re.sub(r"([;;]|```).*", "", sql)
|
|
if sql[:len("select ")] != "select ":
|
|
return None, None
|
|
if sql[:len("select *")] != "select *":
|
|
sql = "select doc_id,docnm_kwd," + sql[6:]
|
|
else:
|
|
flds = []
|
|
for k in field_map.keys():
|
|
if k in forbidden_select_fields4resume:continue
|
|
if len(flds) > 11:break
|
|
flds.append(k)
|
|
sql = "select doc_id,docnm_kwd," + ",".join(flds) + sql[8:]
|
|
|
|
stat_logger.info(f"“{question}” get SQL(refined): {sql}")
|
|
tbl = retrievaler.sql_retrieval(sql, format="json")
|
|
if not tbl or len(tbl["rows"]) == 0: return None, None
|
|
|
|
docid_idx = set([ii for ii, c in enumerate(tbl["columns"]) if c["name"] == "doc_id"])
|
|
docnm_idx = set([ii for ii, c in enumerate(tbl["columns"]) if c["name"] == "docnm_kwd"])
|
|
clmn_idx = [ii for ii in range(len(tbl["columns"])) if ii not in (docid_idx | docnm_idx)]
|
|
|
|
|
|
clmns = "|".join([re.sub(r"(/.*|([^()]+))", "", field_map.get(tbl["columns"][i]["name"], f"C{i}")) for i in clmn_idx]) + "|原文"
|
|
line = "|".join(["------" for _ in range(len(clmn_idx))]) + "|------"
|
|
rows = ["|".join([rmSpace(str(r[i])) for i in clmn_idx]).replace("None", " ") + "|" for r in tbl["rows"]]
|
|
if not docid_idx or not docnm_idx:
|
|
access_logger.error("SQL missing field: " + sql)
|
|
return "\n".join([clmns, line, "\n".join(rows)]), []
|
|
|
|
rows = "\n".join([r + f"##{ii}$$" for ii, r in enumerate(rows)])
|
|
docid_idx = list(docid_idx)[0]
|
|
docnm_idx = list(docnm_idx)[0]
|
|
return "\n".join([clmns, line, rows]), [{"doc_id": r[docid_idx], "docnm_kwd": r[docnm_idx]} for r in tbl["rows"]]
|
|
|