|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy
|
|
import re
|
|
from rag.nlp import bullets_category, is_english, tokenize, remove_contents_table, \
|
|
hierarchical_merge, make_colon_as_title, naive_merge, random_choices
|
|
from rag.nlp import huqie
|
|
from deepdoc.parser import PdfParser, DocxParser
|
|
|
|
|
|
class Pdf(PdfParser):
|
|
def __call__(self, filename, binary=None, from_page=0,
|
|
to_page=100000, zoomin=3, callback=None):
|
|
self.__images__(
|
|
filename if not binary else binary,
|
|
zoomin,
|
|
from_page,
|
|
to_page)
|
|
callback(0.1, "OCR finished")
|
|
|
|
from timeit import default_timer as timer
|
|
start = timer()
|
|
self._layouts_rec(zoomin)
|
|
callback(0.47, "Layout analysis finished")
|
|
print("paddle layouts:", timer() - start)
|
|
self._table_transformer_job(zoomin)
|
|
callback(0.68, "Table analysis finished")
|
|
self._text_merge()
|
|
self._concat_downward(concat_between_pages=False)
|
|
self._filter_forpages()
|
|
self._merge_with_same_bullet()
|
|
callback(0.75, "Text merging finished.")
|
|
tbls = self._extract_table_figure(True, zoomin, False)
|
|
|
|
callback(0.8, "Text extraction finished")
|
|
|
|
return [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno","")) for b in self.boxes], tbls
|
|
|
|
|
|
def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs):
|
|
"""
|
|
Supported file formats are docx, pdf, txt.
|
|
Since a book is long and not all the parts are useful, if it's a PDF,
|
|
please setup the page ranges for every book in order eliminate negative effects and save elapsed computing time.
|
|
"""
|
|
doc = {
|
|
"docnm_kwd": filename,
|
|
"title_tks": huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", filename))
|
|
}
|
|
doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
|
|
pdf_parser = None
|
|
sections,tbls = [], []
|
|
if re.search(r"\.docx?$", filename, re.IGNORECASE):
|
|
callback(0.1, "Start to parse.")
|
|
doc_parser = DocxParser()
|
|
|
|
sections, tbls = doc_parser(binary if binary else filename, from_page=from_page, to_page=to_page)
|
|
remove_contents_table(sections, eng=is_english(random_choices([t for t,_ in sections], k=200)))
|
|
callback(0.8, "Finish parsing.")
|
|
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
|
|
pdf_parser = Pdf()
|
|
sections,tbls = pdf_parser(filename if not binary else binary,
|
|
from_page=from_page, to_page=to_page, callback=callback)
|
|
elif re.search(r"\.txt$", filename, re.IGNORECASE):
|
|
callback(0.1, "Start to parse.")
|
|
txt = ""
|
|
if binary:txt = binary.decode("utf-8")
|
|
else:
|
|
with open(filename, "r") as f:
|
|
while True:
|
|
l = f.readline()
|
|
if not l:break
|
|
txt += l
|
|
sections = txt.split("\n")
|
|
sections = [(l,"") for l in sections if l]
|
|
remove_contents_table(sections, eng = is_english(random_choices([t for t,_ in sections], k=200)))
|
|
callback(0.8, "Finish parsing.")
|
|
else: raise NotImplementedError("file type not supported yet(docx, pdf, txt supported)")
|
|
|
|
make_colon_as_title(sections)
|
|
bull = bullets_category([t for t in random_choices([t for t,_ in sections], k=100)])
|
|
if bull >= 0: cks = hierarchical_merge(bull, sections, 3)
|
|
else: cks = naive_merge(sections, kwargs.get("chunk_token_num", 256), kwargs.get("delimer", "\n。;!?"))
|
|
|
|
sections = [t for t, _ in sections]
|
|
|
|
eng = lang.lower() == "english"
|
|
|
|
res = []
|
|
|
|
for img, rows in tbls:
|
|
bs = 10
|
|
de = ";" if eng else ";"
|
|
for i in range(0, len(rows), bs):
|
|
d = copy.deepcopy(doc)
|
|
r = de.join(rows[i:i + bs])
|
|
r = re.sub(r"\t——(来自| in ).*”%s" % de, "", r)
|
|
tokenize(d, r, eng)
|
|
d["image"] = img
|
|
res.append(d)
|
|
print("TABLE", d["content_with_weight"])
|
|
|
|
for ck in cks:
|
|
d = copy.deepcopy(doc)
|
|
ck = "\n".join(ck)
|
|
if pdf_parser:
|
|
d["image"] = pdf_parser.crop(ck)
|
|
ck = pdf_parser.remove_tag(ck)
|
|
tokenize(d, ck, eng)
|
|
res.append(d)
|
|
return res
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import sys
|
|
def dummy(a, b):
|
|
pass
|
|
chunk(sys.argv[1], from_page=1, to_page=10, callback=dummy)
|
|
|