ragflow / rag /app /book.py
KevinHuSh
init README of deepdoc, add picture processer. (#71)
41c7a59
raw
history blame
5.23 kB
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import copy
import re
from rag.nlp import bullets_category, is_english, tokenize, remove_contents_table, \
hierarchical_merge, make_colon_as_title, naive_merge, random_choices
from rag.nlp import huqie
from deepdoc.parser import PdfParser, DocxParser
class Pdf(PdfParser):
def __call__(self, filename, binary=None, from_page=0,
to_page=100000, zoomin=3, callback=None):
self.__images__(
filename if not binary else binary,
zoomin,
from_page,
to_page)
callback(0.1, "OCR finished")
from timeit import default_timer as timer
start = timer()
self._layouts_rec(zoomin)
callback(0.47, "Layout analysis finished")
print("paddle layouts:", timer() - start)
self._table_transformer_job(zoomin)
callback(0.68, "Table analysis finished")
self._text_merge()
self._concat_downward(concat_between_pages=False)
self._filter_forpages()
self._merge_with_same_bullet()
callback(0.75, "Text merging finished.")
tbls = self._extract_table_figure(True, zoomin, False)
callback(0.8, "Text extraction finished")
return [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno","")) for b in self.boxes], tbls
def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs):
"""
Supported file formats are docx, pdf, txt.
Since a book is long and not all the parts are useful, if it's a PDF,
please setup the page ranges for every book in order eliminate negative effects and save elapsed computing time.
"""
doc = {
"docnm_kwd": filename,
"title_tks": huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", filename))
}
doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
pdf_parser = None
sections,tbls = [], []
if re.search(r"\.docx?$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
doc_parser = DocxParser()
# TODO: table of contents need to be removed
sections, tbls = doc_parser(binary if binary else filename, from_page=from_page, to_page=to_page)
remove_contents_table(sections, eng=is_english(random_choices([t for t,_ in sections], k=200)))
callback(0.8, "Finish parsing.")
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
pdf_parser = Pdf()
sections,tbls = pdf_parser(filename if not binary else binary,
from_page=from_page, to_page=to_page, callback=callback)
elif re.search(r"\.txt$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
txt = ""
if binary:txt = binary.decode("utf-8")
else:
with open(filename, "r") as f:
while True:
l = f.readline()
if not l:break
txt += l
sections = txt.split("\n")
sections = [(l,"") for l in sections if l]
remove_contents_table(sections, eng = is_english(random_choices([t for t,_ in sections], k=200)))
callback(0.8, "Finish parsing.")
else: raise NotImplementedError("file type not supported yet(docx, pdf, txt supported)")
make_colon_as_title(sections)
bull = bullets_category([t for t in random_choices([t for t,_ in sections], k=100)])
if bull >= 0: cks = hierarchical_merge(bull, sections, 3)
else: cks = naive_merge(sections, kwargs.get("chunk_token_num", 256), kwargs.get("delimer", "\n。;!?"))
sections = [t for t, _ in sections]
# is it English
eng = lang.lower() == "english"#is_english(random_choices(sections, k=218))
res = []
# add tables
for img, rows in tbls:
bs = 10
de = ";" if eng else ";"
for i in range(0, len(rows), bs):
d = copy.deepcopy(doc)
r = de.join(rows[i:i + bs])
r = re.sub(r"\t——(来自| in ).*”%s" % de, "", r)
tokenize(d, r, eng)
d["image"] = img
res.append(d)
print("TABLE", d["content_with_weight"])
# wrap up to es documents
for ck in cks:
d = copy.deepcopy(doc)
ck = "\n".join(ck)
if pdf_parser:
d["image"] = pdf_parser.crop(ck)
ck = pdf_parser.remove_tag(ck)
tokenize(d, ck, eng)
res.append(d)
return res
if __name__ == "__main__":
import sys
def dummy(a, b):
pass
chunk(sys.argv[1], from_page=1, to_page=10, callback=dummy)