Kevin Hu
Light GraphRAG (#4585)
47ec63e
raw
history blame
8.57 kB
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import logging
from functools import reduce, partial
import networkx as nx
from api import settings
from graphrag.general.community_reports_extractor import CommunityReportsExtractor
from graphrag.entity_resolution import EntityResolution
from graphrag.general.extractor import Extractor
from graphrag.general.graph_extractor import DEFAULT_ENTITY_TYPES
from graphrag.utils import graph_merge, set_entity, get_relation, set_relation, get_entity, get_graph, set_graph, \
chunk_id, update_nodes_pagerank_nhop_neighbour
from rag.nlp import rag_tokenizer, search
from rag.utils.redis_conn import RedisDistributedLock
class Dealer:
def __init__(self,
extractor: Extractor,
tenant_id: str,
kb_id: str,
llm_bdl,
chunks: list[tuple[str, str]],
language,
entity_types=DEFAULT_ENTITY_TYPES,
embed_bdl=None,
callback=None
):
docids = list(set([docid for docid,_ in chunks]))
self.llm_bdl = llm_bdl
self.embed_bdl = embed_bdl
ext = extractor(self.llm_bdl, language=language,
entity_types=entity_types,
get_entity=partial(get_entity, tenant_id, kb_id),
set_entity=partial(set_entity, tenant_id, kb_id, self.embed_bdl),
get_relation=partial(get_relation, tenant_id, kb_id),
set_relation=partial(set_relation, tenant_id, kb_id, self.embed_bdl)
)
ents, rels = ext(chunks, callback)
self.graph = nx.Graph()
for en in ents:
self.graph.add_node(en["entity_name"], entity_type=en["entity_type"])#, description=en["description"])
for rel in rels:
self.graph.add_edge(
rel["src_id"],
rel["tgt_id"],
weight=rel["weight"],
#description=rel["description"]
)
with RedisDistributedLock(kb_id, 60*60):
old_graph, old_doc_ids = get_graph(tenant_id, kb_id)
if old_graph is not None:
logging.info("Merge with an exiting graph...................")
self.graph = reduce(graph_merge, [old_graph, self.graph])
update_nodes_pagerank_nhop_neighbour(tenant_id, kb_id, self.graph, 2)
if old_doc_ids:
docids.extend(old_doc_ids)
docids = list(set(docids))
set_graph(tenant_id, kb_id, self.graph, docids)
class WithResolution(Dealer):
def __init__(self,
tenant_id: str,
kb_id: str,
llm_bdl,
embed_bdl=None,
callback=None
):
self.llm_bdl = llm_bdl
self.embed_bdl = embed_bdl
with RedisDistributedLock(kb_id, 60*60):
self.graph, doc_ids = get_graph(tenant_id, kb_id)
if not self.graph:
logging.error(f"Faild to fetch the graph. tenant_id:{kb_id}, kb_id:{kb_id}")
if callback:
callback(-1, msg="Faild to fetch the graph.")
return
if callback:
callback(msg="Fetch the existing graph.")
er = EntityResolution(self.llm_bdl,
get_entity=partial(get_entity, tenant_id, kb_id),
set_entity=partial(set_entity, tenant_id, kb_id, self.embed_bdl),
get_relation=partial(get_relation, tenant_id, kb_id),
set_relation=partial(set_relation, tenant_id, kb_id, self.embed_bdl))
reso = er(self.graph)
self.graph = reso.graph
logging.info("Graph resolution is done. Remove {} nodes.".format(len(reso.removed_entities)))
if callback:
callback(msg="Graph resolution is done. Remove {} nodes.".format(len(reso.removed_entities)))
update_nodes_pagerank_nhop_neighbour(tenant_id, kb_id, self.graph, 2)
set_graph(tenant_id, kb_id, self.graph, doc_ids)
settings.docStoreConn.delete({
"knowledge_graph_kwd": "relation",
"kb_id": kb_id,
"from_entity_kwd": reso.removed_entities
}, search.index_name(tenant_id), kb_id)
settings.docStoreConn.delete({
"knowledge_graph_kwd": "relation",
"kb_id": kb_id,
"to_entity_kwd": reso.removed_entities
}, search.index_name(tenant_id), kb_id)
settings.docStoreConn.delete({
"knowledge_graph_kwd": "entity",
"kb_id": kb_id,
"entity_kwd": reso.removed_entities
}, search.index_name(tenant_id), kb_id)
class WithCommunity(Dealer):
def __init__(self,
tenant_id: str,
kb_id: str,
llm_bdl,
embed_bdl=None,
callback=None
):
self.community_structure = None
self.community_reports = None
self.llm_bdl = llm_bdl
self.embed_bdl = embed_bdl
with RedisDistributedLock(kb_id, 60*60):
self.graph, doc_ids = get_graph(tenant_id, kb_id)
if not self.graph:
logging.error(f"Faild to fetch the graph. tenant_id:{kb_id}, kb_id:{kb_id}")
if callback:
callback(-1, msg="Faild to fetch the graph.")
return
if callback:
callback(msg="Fetch the existing graph.")
cr = CommunityReportsExtractor(self.llm_bdl,
get_entity=partial(get_entity, tenant_id, kb_id),
set_entity=partial(set_entity, tenant_id, kb_id, self.embed_bdl),
get_relation=partial(get_relation, tenant_id, kb_id),
set_relation=partial(set_relation, tenant_id, kb_id, self.embed_bdl))
cr = cr(self.graph, callback=callback)
self.community_structure = cr.structured_output
self.community_reports = cr.output
set_graph(tenant_id, kb_id, self.graph, doc_ids)
if callback:
callback(msg="Graph community extraction is done. Indexing {} reports.".format(len(cr.structured_output)))
settings.docStoreConn.delete({
"knowledge_graph_kwd": "community_report",
"kb_id": kb_id
}, search.index_name(tenant_id), kb_id)
for stru, rep in zip(self.community_structure, self.community_reports):
obj = {
"report": rep,
"evidences": "\n".join([f["explanation"] for f in stru["findings"]])
}
chunk = {
"docnm_kwd": stru["title"],
"title_tks": rag_tokenizer.tokenize(stru["title"]),
"content_with_weight": json.dumps(obj, ensure_ascii=False),
"content_ltks": rag_tokenizer.tokenize(obj["report"] +" "+ obj["evidences"]),
"knowledge_graph_kwd": "community_report",
"weight_flt": stru["weight"],
"entities_kwd": stru["entities"],
"important_kwd": stru["entities"],
"kb_id": kb_id,
"source_id": doc_ids,
"available_int": 0
}
chunk["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(chunk["content_ltks"])
#try:
# ebd, _ = self.embed_bdl.encode([", ".join(community["entities"])])
# chunk["q_%d_vec" % len(ebd[0])] = ebd[0]
#except Exception as e:
# logging.exception(f"Fail to embed entity relation: {e}")
settings.docStoreConn.insert([{"id": chunk_id(chunk), **chunk}], search.index_name(tenant_id))