KevinHuSh
commited on
Commit
·
1ed30a6
1
Parent(s):
84f80c5
Add 'One' chunk method (#137)
Browse files- README.md +2 -2
- api/db/__init__.py +1 -0
- api/db/init_data.py +10 -2
- api/settings.py +6 -6
- rag/app/manual.py +4 -4
- rag/app/naive.py +1 -1
- rag/app/one.py +108 -0
- rag/llm/__init__.py +6 -6
- rag/nlp/search.py +2 -2
- rag/svr/task_broker.py +1 -0
- rag/svr/task_executor.py +2 -1
README.md
CHANGED
@@ -88,8 +88,8 @@ If your machine doesn't have *Docker* installed, please refer to [Install Docker
|
|
88 |
> In **user_default_llm** of [service_conf.yaml](./docker/service_conf.yaml), you need to specify LLM factory and your own _API_KEY_.
|
89 |
> It's O.K if you don't have _API_KEY_ at the moment, you can specify it later at the setting part after starting and logging in the system.
|
90 |
> - We have supported the flowing LLM factory, and the others is coming soon:
|
91 |
-
> [OpenAI](https://platform.openai.com/login?launch), [
|
92 |
-
> [
|
93 |
```bash
|
94 |
121:/# git clone https://github.com/infiniflow/ragflow.git
|
95 |
121:/# cd ragflow/docker
|
|
|
88 |
> In **user_default_llm** of [service_conf.yaml](./docker/service_conf.yaml), you need to specify LLM factory and your own _API_KEY_.
|
89 |
> It's O.K if you don't have _API_KEY_ at the moment, you can specify it later at the setting part after starting and logging in the system.
|
90 |
> - We have supported the flowing LLM factory, and the others is coming soon:
|
91 |
+
> [OpenAI](https://platform.openai.com/login?launch), [Tongyi-Qianwen](https://dashscope.console.aliyun.com/model),
|
92 |
+
> [ZHIPU-AI](https://open.bigmodel.cn/), [Moonshot](https://platform.moonshot.cn/docs/docs)
|
93 |
```bash
|
94 |
121:/# git clone https://github.com/infiniflow/ragflow.git
|
95 |
121:/# cd ragflow/docker
|
api/db/__init__.py
CHANGED
@@ -79,3 +79,4 @@ class ParserType(StrEnum):
|
|
79 |
TABLE = "table"
|
80 |
NAIVE = "naive"
|
81 |
PICTURE = "picture"
|
|
|
|
79 |
TABLE = "table"
|
80 |
NAIVE = "naive"
|
81 |
PICTURE = "picture"
|
82 |
+
ONE = "one"
|
api/db/init_data.py
CHANGED
@@ -79,12 +79,12 @@ factory_infos = [{
|
|
79 |
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
|
80 |
"status": "1",
|
81 |
},{
|
82 |
-
"name": "
|
83 |
"logo": "",
|
84 |
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
|
85 |
"status": "1",
|
86 |
},{
|
87 |
-
"name": "
|
88 |
"logo": "",
|
89 |
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
|
90 |
"status": "1",
|
@@ -270,6 +270,14 @@ def init_llm_factory():
|
|
270 |
except Exception as e:
|
271 |
pass
|
272 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
|
274 |
def init_web_data():
|
275 |
start_time = time.time()
|
|
|
79 |
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
|
80 |
"status": "1",
|
81 |
},{
|
82 |
+
"name": "Tongyi-Qianwen",
|
83 |
"logo": "",
|
84 |
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
|
85 |
"status": "1",
|
86 |
},{
|
87 |
+
"name": "ZHIPU-AI",
|
88 |
"logo": "",
|
89 |
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
|
90 |
"status": "1",
|
|
|
270 |
except Exception as e:
|
271 |
pass
|
272 |
|
273 |
+
"""
|
274 |
+
drop table llm;
|
275 |
+
drop table factories;
|
276 |
+
update tenant_llm set llm_factory='Tongyi-Qianwen' where llm_factory='通义千问';
|
277 |
+
update tenant_llm set llm_factory='ZHIPU-AI' where llm_factory='智谱AI';
|
278 |
+
update tenant set parser_ids='naive:General,one:One,qa:Q&A,resume:Resume,table:Table,laws:Laws,manual:Manual,book:Book,paper:Paper,presentation:Presentation,picture:Picture';
|
279 |
+
"""
|
280 |
+
|
281 |
|
282 |
def init_web_data():
|
283 |
start_time = time.time()
|
api/settings.py
CHANGED
@@ -52,7 +52,7 @@ REQUEST_MAX_WAIT_SEC = 300
|
|
52 |
USE_REGISTRY = get_base_config("use_registry")
|
53 |
|
54 |
default_llm = {
|
55 |
-
"
|
56 |
"chat_model": "qwen-plus",
|
57 |
"embedding_model": "text-embedding-v2",
|
58 |
"image2text_model": "qwen-vl-max",
|
@@ -64,7 +64,7 @@ default_llm = {
|
|
64 |
"image2text_model": "gpt-4-vision-preview",
|
65 |
"asr_model": "whisper-1",
|
66 |
},
|
67 |
-
"
|
68 |
"chat_model": "glm-3-turbo",
|
69 |
"embedding_model": "embedding-2",
|
70 |
"image2text_model": "glm-4v",
|
@@ -84,17 +84,17 @@ default_llm = {
|
|
84 |
}
|
85 |
}
|
86 |
LLM = get_base_config("user_default_llm", {})
|
87 |
-
LLM_FACTORY = LLM.get("factory", "
|
88 |
if LLM_FACTORY not in default_llm:
|
89 |
-
print("\33[91m【ERROR】\33[0m:", f"LLM factory {LLM_FACTORY} has not supported yet, switch to '
|
90 |
-
LLM_FACTORY = "
|
91 |
CHAT_MDL = default_llm[LLM_FACTORY]["chat_model"]
|
92 |
EMBEDDING_MDL = default_llm[LLM_FACTORY]["embedding_model"]
|
93 |
ASR_MDL = default_llm[LLM_FACTORY]["asr_model"]
|
94 |
IMAGE2TEXT_MDL = default_llm[LLM_FACTORY]["image2text_model"]
|
95 |
|
96 |
API_KEY = LLM.get("api_key", "")
|
97 |
-
PARSERS = LLM.get("parsers", "naive:General,qa:Q&A,resume:Resume,table:Table,laws:Laws,manual:Manual,book:Book,paper:Paper,presentation:Presentation,picture:Picture")
|
98 |
|
99 |
# distribution
|
100 |
DEPENDENT_DISTRIBUTION = get_base_config("dependent_distribution", False)
|
|
|
52 |
USE_REGISTRY = get_base_config("use_registry")
|
53 |
|
54 |
default_llm = {
|
55 |
+
"Tongyi-Qianwen": {
|
56 |
"chat_model": "qwen-plus",
|
57 |
"embedding_model": "text-embedding-v2",
|
58 |
"image2text_model": "qwen-vl-max",
|
|
|
64 |
"image2text_model": "gpt-4-vision-preview",
|
65 |
"asr_model": "whisper-1",
|
66 |
},
|
67 |
+
"ZHIPU-AI": {
|
68 |
"chat_model": "glm-3-turbo",
|
69 |
"embedding_model": "embedding-2",
|
70 |
"image2text_model": "glm-4v",
|
|
|
84 |
}
|
85 |
}
|
86 |
LLM = get_base_config("user_default_llm", {})
|
87 |
+
LLM_FACTORY = LLM.get("factory", "Tongyi-Qianwen")
|
88 |
if LLM_FACTORY not in default_llm:
|
89 |
+
print("\33[91m【ERROR】\33[0m:", f"LLM factory {LLM_FACTORY} has not supported yet, switch to 'Tongyi-Qianwen/QWen' automatically, and please check the API_KEY in service_conf.yaml.")
|
90 |
+
LLM_FACTORY = "Tongyi-Qianwen"
|
91 |
CHAT_MDL = default_llm[LLM_FACTORY]["chat_model"]
|
92 |
EMBEDDING_MDL = default_llm[LLM_FACTORY]["embedding_model"]
|
93 |
ASR_MDL = default_llm[LLM_FACTORY]["asr_model"]
|
94 |
IMAGE2TEXT_MDL = default_llm[LLM_FACTORY]["image2text_model"]
|
95 |
|
96 |
API_KEY = LLM.get("api_key", "")
|
97 |
+
PARSERS = LLM.get("parsers", "naive:General,one:One,qa:Q&A,resume:Resume,table:Table,laws:Laws,manual:Manual,book:Book,paper:Paper,presentation:Presentation,picture:Picture")
|
98 |
|
99 |
# distribution
|
100 |
DEPENDENT_DISTRIBUTION = get_base_config("dependent_distribution", False)
|
rag/app/manual.py
CHANGED
@@ -57,7 +57,7 @@ class Pdf(PdfParser):
|
|
57 |
sec_ids = []
|
58 |
sid = 0
|
59 |
for i, lvl in enumerate(levels):
|
60 |
-
if lvl <= most_level: sid += 1
|
61 |
sec_ids.append(sid)
|
62 |
#print(lvl, self.boxes[i]["text"], most_level)
|
63 |
|
@@ -75,7 +75,7 @@ class Pdf(PdfParser):
|
|
75 |
continue
|
76 |
chunks.append(txt + poss)
|
77 |
if sec_id >-1: last_sid = sec_id
|
78 |
-
return chunks
|
79 |
|
80 |
|
81 |
def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs):
|
@@ -86,7 +86,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
|
|
86 |
|
87 |
if re.search(r"\.pdf$", filename, re.IGNORECASE):
|
88 |
pdf_parser = Pdf()
|
89 |
-
cks = pdf_parser(filename if not binary else binary,
|
90 |
from_page=from_page, to_page=to_page, callback=callback)
|
91 |
else: raise NotImplementedError("file type not supported yet(pdf supported)")
|
92 |
doc = {
|
@@ -100,7 +100,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
|
|
100 |
i = 0
|
101 |
chunk = []
|
102 |
tk_cnt = 0
|
103 |
-
res =
|
104 |
def add_chunk():
|
105 |
nonlocal chunk, res, doc, pdf_parser, tk_cnt
|
106 |
d = copy.deepcopy(doc)
|
|
|
57 |
sec_ids = []
|
58 |
sid = 0
|
59 |
for i, lvl in enumerate(levels):
|
60 |
+
if lvl <= most_level and i > 0 and lvl != levels[i-1]: sid += 1
|
61 |
sec_ids.append(sid)
|
62 |
#print(lvl, self.boxes[i]["text"], most_level)
|
63 |
|
|
|
75 |
continue
|
76 |
chunks.append(txt + poss)
|
77 |
if sec_id >-1: last_sid = sec_id
|
78 |
+
return chunks, tbls
|
79 |
|
80 |
|
81 |
def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs):
|
|
|
86 |
|
87 |
if re.search(r"\.pdf$", filename, re.IGNORECASE):
|
88 |
pdf_parser = Pdf()
|
89 |
+
cks, tbls = pdf_parser(filename if not binary else binary,
|
90 |
from_page=from_page, to_page=to_page, callback=callback)
|
91 |
else: raise NotImplementedError("file type not supported yet(pdf supported)")
|
92 |
doc = {
|
|
|
100 |
i = 0
|
101 |
chunk = []
|
102 |
tk_cnt = 0
|
103 |
+
res = tokenize_table(tbls, doc, eng)
|
104 |
def add_chunk():
|
105 |
nonlocal chunk, res, doc, pdf_parser, tk_cnt
|
106 |
d = copy.deepcopy(doc)
|
rag/app/naive.py
CHANGED
@@ -49,7 +49,7 @@ class Pdf(PdfParser):
|
|
49 |
|
50 |
def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs):
|
51 |
"""
|
52 |
-
Supported file formats are docx, pdf, txt.
|
53 |
This method apply the naive ways to chunk files.
|
54 |
Successive text will be sliced into pieces using 'delimiter'.
|
55 |
Next, these successive pieces are merge into chunks whose token number is no more than 'Max token number'.
|
|
|
49 |
|
50 |
def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs):
|
51 |
"""
|
52 |
+
Supported file formats are docx, pdf, excel, txt.
|
53 |
This method apply the naive ways to chunk files.
|
54 |
Successive text will be sliced into pieces using 'delimiter'.
|
55 |
Next, these successive pieces are merge into chunks whose token number is no more than 'Max token number'.
|
rag/app/one.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
2 |
+
# you may not use this file except in compliance with the License.
|
3 |
+
# You may obtain a copy of the License at
|
4 |
+
#
|
5 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
6 |
+
#
|
7 |
+
# Unless required by applicable law or agreed to in writing, software
|
8 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
9 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
10 |
+
# See the License for the specific language governing permissions and
|
11 |
+
# limitations under the License.
|
12 |
+
#
|
13 |
+
import copy
|
14 |
+
import re
|
15 |
+
from rag.app import laws
|
16 |
+
from rag.nlp import huqie, is_english, tokenize, naive_merge, tokenize_table, add_positions
|
17 |
+
from deepdoc.parser import PdfParser, ExcelParser
|
18 |
+
from rag.settings import cron_logger
|
19 |
+
|
20 |
+
|
21 |
+
class Pdf(PdfParser):
|
22 |
+
def __call__(self, filename, binary=None, from_page=0,
|
23 |
+
to_page=100000, zoomin=3, callback=None):
|
24 |
+
callback(msg="OCR is running...")
|
25 |
+
self.__images__(
|
26 |
+
filename if not binary else binary,
|
27 |
+
zoomin,
|
28 |
+
from_page,
|
29 |
+
to_page,
|
30 |
+
callback
|
31 |
+
)
|
32 |
+
callback(msg="OCR finished")
|
33 |
+
|
34 |
+
from timeit import default_timer as timer
|
35 |
+
start = timer()
|
36 |
+
self._layouts_rec(zoomin)
|
37 |
+
callback(0.63, "Layout analysis finished.")
|
38 |
+
print("paddle layouts:", timer() - start)
|
39 |
+
self._table_transformer_job(zoomin)
|
40 |
+
callback(0.65, "Table analysis finished.")
|
41 |
+
self._text_merge()
|
42 |
+
callback(0.67, "Text merging finished")
|
43 |
+
tbls = self._extract_table_figure(True, zoomin, True, True)
|
44 |
+
self._concat_downward()
|
45 |
+
|
46 |
+
sections = [(b["text"], self.get_position(b, zoomin)) for i, b in enumerate(self.boxes)]
|
47 |
+
for (img, rows), poss in tbls:
|
48 |
+
sections.append((rows if isinstance(rows, str) else rows[0],
|
49 |
+
[(p[0] + 1 - from_page, p[1], p[2], p[3], p[4]) for p in poss]))
|
50 |
+
return [txt for txt, _ in sorted(sections, key=lambda x: (x[-1][0][0], x[-1][0][3], x[-1][0][1]))]
|
51 |
+
|
52 |
+
|
53 |
+
def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs):
|
54 |
+
"""
|
55 |
+
Supported file formats are docx, pdf, excel, txt.
|
56 |
+
One file forms a chunk which maintains original text order.
|
57 |
+
"""
|
58 |
+
|
59 |
+
eng = lang.lower() == "english"#is_english(cks)
|
60 |
+
|
61 |
+
sections = []
|
62 |
+
if re.search(r"\.docx?$", filename, re.IGNORECASE):
|
63 |
+
callback(0.1, "Start to parse.")
|
64 |
+
for txt in laws.Docx()(filename, binary):
|
65 |
+
sections.append(txt)
|
66 |
+
callback(0.8, "Finish parsing.")
|
67 |
+
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
|
68 |
+
pdf_parser = Pdf()
|
69 |
+
sections = pdf_parser(filename if not binary else binary, to_page=to_page, callback=callback)
|
70 |
+
elif re.search(r"\.xlsx?$", filename, re.IGNORECASE):
|
71 |
+
callback(0.1, "Start to parse.")
|
72 |
+
excel_parser = ExcelParser()
|
73 |
+
sections = [excel_parser.html(binary)]
|
74 |
+
elif re.search(r"\.txt$", filename, re.IGNORECASE):
|
75 |
+
callback(0.1, "Start to parse.")
|
76 |
+
txt = ""
|
77 |
+
if binary:
|
78 |
+
txt = binary.decode("utf-8")
|
79 |
+
else:
|
80 |
+
with open(filename, "r") as f:
|
81 |
+
while True:
|
82 |
+
l = f.readline()
|
83 |
+
if not l: break
|
84 |
+
txt += l
|
85 |
+
sections = txt.split("\n")
|
86 |
+
sections = [(l, "") for l in sections if l]
|
87 |
+
callback(0.8, "Finish parsing.")
|
88 |
+
else:
|
89 |
+
raise NotImplementedError("file type not supported yet(docx, pdf, txt supported)")
|
90 |
+
|
91 |
+
doc = {
|
92 |
+
"docnm_kwd": filename,
|
93 |
+
"title_tks": huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", filename))
|
94 |
+
}
|
95 |
+
doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
|
96 |
+
tokenize(doc, "\n".join(sections), eng)
|
97 |
+
return [doc]
|
98 |
+
|
99 |
+
|
100 |
+
if __name__ == "__main__":
|
101 |
+
import sys
|
102 |
+
|
103 |
+
|
104 |
+
def dummy(prog=None, msg=""):
|
105 |
+
pass
|
106 |
+
|
107 |
+
|
108 |
+
chunk(sys.argv[1], from_page=0, to_page=10, callback=dummy)
|
rag/llm/__init__.py
CHANGED
@@ -21,8 +21,8 @@ from .cv_model import *
|
|
21 |
EmbeddingModel = {
|
22 |
"Local": HuEmbedding,
|
23 |
"OpenAI": OpenAIEmbed,
|
24 |
-
"
|
25 |
-
"
|
26 |
"Moonshot": HuEmbedding
|
27 |
}
|
28 |
|
@@ -30,16 +30,16 @@ EmbeddingModel = {
|
|
30 |
CvModel = {
|
31 |
"OpenAI": GptV4,
|
32 |
"Local": LocalCV,
|
33 |
-
"
|
34 |
-
"
|
35 |
"Moonshot": LocalCV
|
36 |
}
|
37 |
|
38 |
|
39 |
ChatModel = {
|
40 |
"OpenAI": GptTurbo,
|
41 |
-
"
|
42 |
-
"
|
43 |
"Local": LocalLLM,
|
44 |
"Moonshot": MoonshotChat
|
45 |
}
|
|
|
21 |
EmbeddingModel = {
|
22 |
"Local": HuEmbedding,
|
23 |
"OpenAI": OpenAIEmbed,
|
24 |
+
"Tongyi-Qianwen": HuEmbedding, #QWenEmbed,
|
25 |
+
"ZHIPU-AI": ZhipuEmbed,
|
26 |
"Moonshot": HuEmbedding
|
27 |
}
|
28 |
|
|
|
30 |
CvModel = {
|
31 |
"OpenAI": GptV4,
|
32 |
"Local": LocalCV,
|
33 |
+
"Tongyi-Qianwen": QWenCV,
|
34 |
+
"ZHIPU-AI": Zhipu4V,
|
35 |
"Moonshot": LocalCV
|
36 |
}
|
37 |
|
38 |
|
39 |
ChatModel = {
|
40 |
"OpenAI": GptTurbo,
|
41 |
+
"ZHIPU-AI": ZhipuChat,
|
42 |
+
"Tongyi-Qianwen": QWenChat,
|
43 |
"Local": LocalLLM,
|
44 |
"Moonshot": MoonshotChat
|
45 |
}
|
rag/nlp/search.py
CHANGED
@@ -194,7 +194,7 @@ class Dealer:
|
|
194 |
return [float(t) for t in txt.split("\t")]
|
195 |
|
196 |
def insert_citations(self, answer, chunks, chunk_v,
|
197 |
-
embd_mdl, tkweight=0.
|
198 |
assert len(chunks) == len(chunk_v)
|
199 |
pieces = re.split(r"(```)", answer)
|
200 |
if len(pieces) >= 3:
|
@@ -243,7 +243,7 @@ class Dealer:
|
|
243 |
chunks_tks,
|
244 |
tkweight, vtweight)
|
245 |
mx = np.max(sim) * 0.99
|
246 |
-
if mx < 0.
|
247 |
continue
|
248 |
cites[idx[i]] = list(
|
249 |
set([str(ii) for ii in range(len(chunk_v)) if sim[ii] > mx]))[:4]
|
|
|
194 |
return [float(t) for t in txt.split("\t")]
|
195 |
|
196 |
def insert_citations(self, answer, chunks, chunk_v,
|
197 |
+
embd_mdl, tkweight=0.1, vtweight=0.9):
|
198 |
assert len(chunks) == len(chunk_v)
|
199 |
pieces = re.split(r"(```)", answer)
|
200 |
if len(pieces) >= 3:
|
|
|
243 |
chunks_tks,
|
244 |
tkweight, vtweight)
|
245 |
mx = np.max(sim) * 0.99
|
246 |
+
if mx < 0.65:
|
247 |
continue
|
248 |
cites[idx[i]] = list(
|
249 |
set([str(ii) for ii in range(len(chunk_v)) if sim[ii] > mx]))[:4]
|
rag/svr/task_broker.py
CHANGED
@@ -84,6 +84,7 @@ def dispatch():
|
|
84 |
pages = PdfParser.total_page_number(r["name"], MINIO.get(r["kb_id"], r["location"]))
|
85 |
page_size = 5
|
86 |
if r["parser_id"] == "paper": page_size = 12
|
|
|
87 |
for s,e in r["parser_config"].get("pages", [(0,100000)]):
|
88 |
e = min(e, pages)
|
89 |
for p in range(s, e, page_size):
|
|
|
84 |
pages = PdfParser.total_page_number(r["name"], MINIO.get(r["kb_id"], r["location"]))
|
85 |
page_size = 5
|
86 |
if r["parser_id"] == "paper": page_size = 12
|
87 |
+
if r["parser_id"] == "one": page_size = 1000000000
|
88 |
for s,e in r["parser_config"].get("pages", [(0,100000)]):
|
89 |
e = min(e, pages)
|
90 |
for p in range(s, e, page_size):
|
rag/svr/task_executor.py
CHANGED
@@ -39,7 +39,7 @@ from rag.nlp import search
|
|
39 |
from io import BytesIO
|
40 |
import pandas as pd
|
41 |
|
42 |
-
from rag.app import laws, paper, presentation, manual, qa, table, book, resume, picture, naive
|
43 |
|
44 |
from api.db import LLMType, ParserType
|
45 |
from api.db.services.document_service import DocumentService
|
@@ -60,6 +60,7 @@ FACTORY = {
|
|
60 |
ParserType.TABLE.value: table,
|
61 |
ParserType.RESUME.value: resume,
|
62 |
ParserType.PICTURE.value: picture,
|
|
|
63 |
}
|
64 |
|
65 |
|
|
|
39 |
from io import BytesIO
|
40 |
import pandas as pd
|
41 |
|
42 |
+
from rag.app import laws, paper, presentation, manual, qa, table, book, resume, picture, naive, one
|
43 |
|
44 |
from api.db import LLMType, ParserType
|
45 |
from api.db.services.document_service import DocumentService
|
|
|
60 |
ParserType.TABLE.value: table,
|
61 |
ParserType.RESUME.value: resume,
|
62 |
ParserType.PICTURE.value: picture,
|
63 |
+
ParserType.ONE.value: one,
|
64 |
}
|
65 |
|
66 |
|