add support for cohere (#1849)
Browse files### What problem does this PR solve?
_Briefly describe what this PR aims to solve. Include background context
that will help reviewers understand the purpose of the PR._
### Type of change
- [x] New Feature (non-breaking change which adds functionality)
---------
Co-authored-by: Zhedong Cen <[email protected]>
- conf/llm_factories.json +110 -0
- rag/llm/__init__.py +6 -3
- rag/llm/chat_model.py +81 -0
- rag/llm/embedding_model.py +31 -1
- rag/llm/rerank_model.py +26 -1
- requirements.txt +1 -0
- requirements_arm.txt +1 -0
- requirements_dev.txt +1 -0
- web/src/assets/svg/llm/cohere.svg +1 -0
- web/src/pages/user-setting/setting-model/constant.ts +2 -1
conf/llm_factories.json
CHANGED
|
@@ -2216,6 +2216,116 @@
|
|
| 2216 |
"tags": "LLM,TEXT EMBEDDING,IMAGE2TEXT",
|
| 2217 |
"status": "1",
|
| 2218 |
"llm": []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2219 |
}
|
| 2220 |
]
|
| 2221 |
}
|
|
|
|
| 2216 |
"tags": "LLM,TEXT EMBEDDING,IMAGE2TEXT",
|
| 2217 |
"status": "1",
|
| 2218 |
"llm": []
|
| 2219 |
+
},
|
| 2220 |
+
{
|
| 2221 |
+
"name": "cohere",
|
| 2222 |
+
"logo": "",
|
| 2223 |
+
"tags": "LLM,TEXT EMBEDDING, TEXT RE-RANK",
|
| 2224 |
+
"status": "1",
|
| 2225 |
+
"llm": [
|
| 2226 |
+
{
|
| 2227 |
+
"llm_name": "command-r-plus",
|
| 2228 |
+
"tags": "LLM,CHAT,128k",
|
| 2229 |
+
"max_tokens": 131072,
|
| 2230 |
+
"model_type": "chat"
|
| 2231 |
+
},
|
| 2232 |
+
{
|
| 2233 |
+
"llm_name": "command-r",
|
| 2234 |
+
"tags": "LLM,CHAT,128k",
|
| 2235 |
+
"max_tokens": 131072,
|
| 2236 |
+
"model_type": "chat"
|
| 2237 |
+
},
|
| 2238 |
+
{
|
| 2239 |
+
"llm_name": "command",
|
| 2240 |
+
"tags": "LLM,CHAT,4k",
|
| 2241 |
+
"max_tokens": 4096,
|
| 2242 |
+
"model_type": "chat"
|
| 2243 |
+
},
|
| 2244 |
+
{
|
| 2245 |
+
"llm_name": "command-nightly",
|
| 2246 |
+
"tags": "LLM,CHAT,128k",
|
| 2247 |
+
"max_tokens": 131072,
|
| 2248 |
+
"model_type": "chat"
|
| 2249 |
+
},
|
| 2250 |
+
{
|
| 2251 |
+
"llm_name": "command-light",
|
| 2252 |
+
"tags": "LLM,CHAT,4k",
|
| 2253 |
+
"max_tokens": 4096,
|
| 2254 |
+
"model_type": "chat"
|
| 2255 |
+
},
|
| 2256 |
+
{
|
| 2257 |
+
"llm_name": "command-light-nightly",
|
| 2258 |
+
"tags": "LLM,CHAT,4k",
|
| 2259 |
+
"max_tokens": 4096,
|
| 2260 |
+
"model_type": "chat"
|
| 2261 |
+
},
|
| 2262 |
+
{
|
| 2263 |
+
"llm_name": "embed-english-v3.0",
|
| 2264 |
+
"tags": "TEXT EMBEDDING",
|
| 2265 |
+
"max_tokens": 512,
|
| 2266 |
+
"model_type": "embedding"
|
| 2267 |
+
},
|
| 2268 |
+
{
|
| 2269 |
+
"llm_name": "embed-english-light-v3.0",
|
| 2270 |
+
"tags": "TEXT EMBEDDING",
|
| 2271 |
+
"max_tokens": 512,
|
| 2272 |
+
"model_type": "embedding"
|
| 2273 |
+
},
|
| 2274 |
+
{
|
| 2275 |
+
"llm_name": "embed-multilingual-v3.0",
|
| 2276 |
+
"tags": "TEXT EMBEDDING",
|
| 2277 |
+
"max_tokens": 512,
|
| 2278 |
+
"model_type": "embedding"
|
| 2279 |
+
},
|
| 2280 |
+
{
|
| 2281 |
+
"llm_name": "embed-multilingual-light-v3.0",
|
| 2282 |
+
"tags": "TEXT EMBEDDING",
|
| 2283 |
+
"max_tokens": 512,
|
| 2284 |
+
"model_type": "embedding"
|
| 2285 |
+
},
|
| 2286 |
+
{
|
| 2287 |
+
"llm_name": "embed-english-v2.0",
|
| 2288 |
+
"tags": "TEXT EMBEDDING",
|
| 2289 |
+
"max_tokens": 512,
|
| 2290 |
+
"model_type": "embedding"
|
| 2291 |
+
},
|
| 2292 |
+
{
|
| 2293 |
+
"llm_name": "embed-english-light-v2.0",
|
| 2294 |
+
"tags": "TEXT EMBEDDING",
|
| 2295 |
+
"max_tokens": 512,
|
| 2296 |
+
"model_type": "embedding"
|
| 2297 |
+
},
|
| 2298 |
+
{
|
| 2299 |
+
"llm_name": "embed-multilingual-v2.0",
|
| 2300 |
+
"tags": "TEXT EMBEDDING",
|
| 2301 |
+
"max_tokens": 256,
|
| 2302 |
+
"model_type": "embedding"
|
| 2303 |
+
},
|
| 2304 |
+
{
|
| 2305 |
+
"llm_name": "rerank-english-v3.0",
|
| 2306 |
+
"tags": "RE-RANK,4k",
|
| 2307 |
+
"max_tokens": 4096,
|
| 2308 |
+
"model_type": "rerank"
|
| 2309 |
+
},
|
| 2310 |
+
{
|
| 2311 |
+
"llm_name": "rerank-multilingual-v3.0",
|
| 2312 |
+
"tags": "RE-RANK,4k",
|
| 2313 |
+
"max_tokens": 4096,
|
| 2314 |
+
"model_type": "rerank"
|
| 2315 |
+
},
|
| 2316 |
+
{
|
| 2317 |
+
"llm_name": "rerank-english-v2.0",
|
| 2318 |
+
"tags": "RE-RANK,512",
|
| 2319 |
+
"max_tokens": 8196,
|
| 2320 |
+
"model_type": "rerank"
|
| 2321 |
+
},
|
| 2322 |
+
{
|
| 2323 |
+
"llm_name": "rerank-multilingual-v2.0",
|
| 2324 |
+
"tags": "RE-RANK,512",
|
| 2325 |
+
"max_tokens": 512,
|
| 2326 |
+
"model_type": "rerank"
|
| 2327 |
+
}
|
| 2328 |
+
]
|
| 2329 |
}
|
| 2330 |
]
|
| 2331 |
}
|
rag/llm/__init__.py
CHANGED
|
@@ -37,7 +37,8 @@ EmbeddingModel = {
|
|
| 37 |
"Gemini": GeminiEmbed,
|
| 38 |
"NVIDIA": NvidiaEmbed,
|
| 39 |
"LM-Studio": LmStudioEmbed,
|
| 40 |
-
"OpenAI-API-Compatible": OpenAI_APIEmbed
|
|
|
|
| 41 |
}
|
| 42 |
|
| 43 |
|
|
@@ -81,7 +82,8 @@ ChatModel = {
|
|
| 81 |
"StepFun": StepFunChat,
|
| 82 |
"NVIDIA": NvidiaChat,
|
| 83 |
"LM-Studio": LmStudioChat,
|
| 84 |
-
"OpenAI-API-Compatible": OpenAI_APIChat
|
|
|
|
| 85 |
}
|
| 86 |
|
| 87 |
|
|
@@ -92,7 +94,8 @@ RerankModel = {
|
|
| 92 |
"Xinference": XInferenceRerank,
|
| 93 |
"NVIDIA": NvidiaRerank,
|
| 94 |
"LM-Studio": LmStudioRerank,
|
| 95 |
-
"OpenAI-API-Compatible": OpenAI_APIRerank
|
|
|
|
| 96 |
}
|
| 97 |
|
| 98 |
|
|
|
|
| 37 |
"Gemini": GeminiEmbed,
|
| 38 |
"NVIDIA": NvidiaEmbed,
|
| 39 |
"LM-Studio": LmStudioEmbed,
|
| 40 |
+
"OpenAI-API-Compatible": OpenAI_APIEmbed,
|
| 41 |
+
"cohere": CoHereEmbed
|
| 42 |
}
|
| 43 |
|
| 44 |
|
|
|
|
| 82 |
"StepFun": StepFunChat,
|
| 83 |
"NVIDIA": NvidiaChat,
|
| 84 |
"LM-Studio": LmStudioChat,
|
| 85 |
+
"OpenAI-API-Compatible": OpenAI_APIChat,
|
| 86 |
+
"cohere": CoHereChat
|
| 87 |
}
|
| 88 |
|
| 89 |
|
|
|
|
| 94 |
"Xinference": XInferenceRerank,
|
| 95 |
"NVIDIA": NvidiaRerank,
|
| 96 |
"LM-Studio": LmStudioRerank,
|
| 97 |
+
"OpenAI-API-Compatible": OpenAI_APIRerank,
|
| 98 |
+
"cohere": CoHereRerank
|
| 99 |
}
|
| 100 |
|
| 101 |
|
rag/llm/chat_model.py
CHANGED
|
@@ -900,3 +900,84 @@ class OpenAI_APIChat(Base):
|
|
| 900 |
base_url = os.path.join(base_url, "v1")
|
| 901 |
model_name = model_name.split("___")[0]
|
| 902 |
super().__init__(key, model_name, base_url)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 900 |
base_url = os.path.join(base_url, "v1")
|
| 901 |
model_name = model_name.split("___")[0]
|
| 902 |
super().__init__(key, model_name, base_url)
|
| 903 |
+
|
| 904 |
+
|
| 905 |
+
class CoHereChat(Base):
|
| 906 |
+
def __init__(self, key, model_name, base_url=""):
|
| 907 |
+
from cohere import Client
|
| 908 |
+
|
| 909 |
+
self.client = Client(api_key=key)
|
| 910 |
+
self.model_name = model_name
|
| 911 |
+
|
| 912 |
+
def chat(self, system, history, gen_conf):
|
| 913 |
+
if system:
|
| 914 |
+
history.insert(0, {"role": "system", "content": system})
|
| 915 |
+
if "top_p" in gen_conf:
|
| 916 |
+
gen_conf["p"] = gen_conf.pop("top_p")
|
| 917 |
+
if "frequency_penalty" in gen_conf and "presence_penalty" in gen_conf:
|
| 918 |
+
gen_conf.pop("presence_penalty")
|
| 919 |
+
for item in history:
|
| 920 |
+
if "role" in item and item["role"] == "user":
|
| 921 |
+
item["role"] = "USER"
|
| 922 |
+
if "role" in item and item["role"] == "assistant":
|
| 923 |
+
item["role"] = "CHATBOT"
|
| 924 |
+
if "content" in item:
|
| 925 |
+
item["message"] = item.pop("content")
|
| 926 |
+
mes = history.pop()["message"]
|
| 927 |
+
ans = ""
|
| 928 |
+
try:
|
| 929 |
+
response = self.client.chat(
|
| 930 |
+
model=self.model_name, chat_history=history, message=mes, **gen_conf
|
| 931 |
+
)
|
| 932 |
+
ans = response.text
|
| 933 |
+
if response.finish_reason == "MAX_TOKENS":
|
| 934 |
+
ans += (
|
| 935 |
+
"...\nFor the content length reason, it stopped, continue?"
|
| 936 |
+
if is_english([ans])
|
| 937 |
+
else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
| 938 |
+
)
|
| 939 |
+
return (
|
| 940 |
+
ans,
|
| 941 |
+
response.meta.tokens.input_tokens + response.meta.tokens.output_tokens,
|
| 942 |
+
)
|
| 943 |
+
except Exception as e:
|
| 944 |
+
return ans + "\n**ERROR**: " + str(e), 0
|
| 945 |
+
|
| 946 |
+
def chat_streamly(self, system, history, gen_conf):
|
| 947 |
+
if system:
|
| 948 |
+
history.insert(0, {"role": "system", "content": system})
|
| 949 |
+
if "top_p" in gen_conf:
|
| 950 |
+
gen_conf["p"] = gen_conf.pop("top_p")
|
| 951 |
+
if "frequency_penalty" in gen_conf and "presence_penalty" in gen_conf:
|
| 952 |
+
gen_conf.pop("presence_penalty")
|
| 953 |
+
for item in history:
|
| 954 |
+
if "role" in item and item["role"] == "user":
|
| 955 |
+
item["role"] = "USER"
|
| 956 |
+
if "role" in item and item["role"] == "assistant":
|
| 957 |
+
item["role"] = "CHATBOT"
|
| 958 |
+
if "content" in item:
|
| 959 |
+
item["message"] = item.pop("content")
|
| 960 |
+
mes = history.pop()["message"]
|
| 961 |
+
ans = ""
|
| 962 |
+
total_tokens = 0
|
| 963 |
+
try:
|
| 964 |
+
response = self.client.chat_stream(
|
| 965 |
+
model=self.model_name, chat_history=history, message=mes, **gen_conf
|
| 966 |
+
)
|
| 967 |
+
for resp in response:
|
| 968 |
+
if resp.event_type == "text-generation":
|
| 969 |
+
ans += resp.text
|
| 970 |
+
total_tokens += num_tokens_from_string(resp.text)
|
| 971 |
+
elif resp.event_type == "stream-end":
|
| 972 |
+
if resp.finish_reason == "MAX_TOKENS":
|
| 973 |
+
ans += (
|
| 974 |
+
"...\nFor the content length reason, it stopped, continue?"
|
| 975 |
+
if is_english([ans])
|
| 976 |
+
else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
| 977 |
+
)
|
| 978 |
+
yield ans
|
| 979 |
+
|
| 980 |
+
except Exception as e:
|
| 981 |
+
yield ans + "\n**ERROR**: " + str(e)
|
| 982 |
+
|
| 983 |
+
yield total_tokens
|
rag/llm/embedding_model.py
CHANGED
|
@@ -522,4 +522,34 @@ class OpenAI_APIEmbed(OpenAIEmbed):
|
|
| 522 |
if base_url.split("/")[-1] != "v1":
|
| 523 |
base_url = os.path.join(base_url, "v1")
|
| 524 |
self.client = OpenAI(api_key=key, base_url=base_url)
|
| 525 |
-
self.model_name = model_name.split("___")[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 522 |
if base_url.split("/")[-1] != "v1":
|
| 523 |
base_url = os.path.join(base_url, "v1")
|
| 524 |
self.client = OpenAI(api_key=key, base_url=base_url)
|
| 525 |
+
self.model_name = model_name.split("___")[0]
|
| 526 |
+
|
| 527 |
+
|
| 528 |
+
class CoHereEmbed(Base):
|
| 529 |
+
def __init__(self, key, model_name, base_url=None):
|
| 530 |
+
from cohere import Client
|
| 531 |
+
|
| 532 |
+
self.client = Client(api_key=key)
|
| 533 |
+
self.model_name = model_name
|
| 534 |
+
|
| 535 |
+
def encode(self, texts: list, batch_size=32):
|
| 536 |
+
res = self.client.embed(
|
| 537 |
+
texts=texts,
|
| 538 |
+
model=self.model_name,
|
| 539 |
+
input_type="search_query",
|
| 540 |
+
embedding_types=["float"],
|
| 541 |
+
)
|
| 542 |
+
return np.array([d for d in res.embeddings.float]), int(
|
| 543 |
+
res.meta.billed_units.input_tokens
|
| 544 |
+
)
|
| 545 |
+
|
| 546 |
+
def encode_queries(self, text):
|
| 547 |
+
res = self.client.embed(
|
| 548 |
+
texts=[text],
|
| 549 |
+
model=self.model_name,
|
| 550 |
+
input_type="search_query",
|
| 551 |
+
embedding_types=["float"],
|
| 552 |
+
)
|
| 553 |
+
return np.array([d for d in res.embeddings.float]), int(
|
| 554 |
+
res.meta.billed_units.input_tokens
|
| 555 |
+
)
|
rag/llm/rerank_model.py
CHANGED
|
@@ -203,7 +203,9 @@ class NvidiaRerank(Base):
|
|
| 203 |
"top_n": len(texts),
|
| 204 |
}
|
| 205 |
res = requests.post(self.base_url, headers=self.headers, json=data).json()
|
| 206 |
-
|
|
|
|
|
|
|
| 207 |
|
| 208 |
|
| 209 |
class LmStudioRerank(Base):
|
|
@@ -220,3 +222,26 @@ class OpenAI_APIRerank(Base):
|
|
| 220 |
|
| 221 |
def similarity(self, query: str, texts: list):
|
| 222 |
raise NotImplementedError("The api has not been implement")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
"top_n": len(texts),
|
| 204 |
}
|
| 205 |
res = requests.post(self.base_url, headers=self.headers, json=data).json()
|
| 206 |
+
rank = np.array([d["logit"] for d in res["rankings"]])
|
| 207 |
+
indexs = [d["index"] for d in res["rankings"]]
|
| 208 |
+
return rank[indexs], token_count
|
| 209 |
|
| 210 |
|
| 211 |
class LmStudioRerank(Base):
|
|
|
|
| 222 |
|
| 223 |
def similarity(self, query: str, texts: list):
|
| 224 |
raise NotImplementedError("The api has not been implement")
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
class CoHereRerank(Base):
|
| 228 |
+
def __init__(self, key, model_name, base_url=None):
|
| 229 |
+
from cohere import Client
|
| 230 |
+
|
| 231 |
+
self.client = Client(api_key=key)
|
| 232 |
+
self.model_name = model_name
|
| 233 |
+
|
| 234 |
+
def similarity(self, query: str, texts: list):
|
| 235 |
+
token_count = num_tokens_from_string(query) + sum(
|
| 236 |
+
[num_tokens_from_string(t) for t in texts]
|
| 237 |
+
)
|
| 238 |
+
res = self.client.rerank(
|
| 239 |
+
model=self.model_name,
|
| 240 |
+
query=query,
|
| 241 |
+
documents=texts,
|
| 242 |
+
top_n=len(texts),
|
| 243 |
+
return_documents=False,
|
| 244 |
+
)
|
| 245 |
+
rank = np.array([d.relevance_score for d in res.results])
|
| 246 |
+
indexs = [d.index for d in res.results]
|
| 247 |
+
return rank[indexs], token_count
|
requirements.txt
CHANGED
|
@@ -7,6 +7,7 @@ botocore==1.34.140
|
|
| 7 |
cachetools==5.3.3
|
| 8 |
chardet==5.2.0
|
| 9 |
cn2an==0.5.22
|
|
|
|
| 10 |
dashscope==1.14.1
|
| 11 |
datrie==0.8.2
|
| 12 |
demjson3==3.0.6
|
|
|
|
| 7 |
cachetools==5.3.3
|
| 8 |
chardet==5.2.0
|
| 9 |
cn2an==0.5.22
|
| 10 |
+
cohere==5.6.2
|
| 11 |
dashscope==1.14.1
|
| 12 |
datrie==0.8.2
|
| 13 |
demjson3==3.0.6
|
requirements_arm.txt
CHANGED
|
@@ -14,6 +14,7 @@ certifi==2024.7.4
|
|
| 14 |
cffi==1.16.0
|
| 15 |
charset-normalizer==3.3.2
|
| 16 |
click==8.1.7
|
|
|
|
| 17 |
coloredlogs==15.0.1
|
| 18 |
cryptography==42.0.5
|
| 19 |
dashscope==1.14.1
|
|
|
|
| 14 |
cffi==1.16.0
|
| 15 |
charset-normalizer==3.3.2
|
| 16 |
click==8.1.7
|
| 17 |
+
cohere==5.6.2
|
| 18 |
coloredlogs==15.0.1
|
| 19 |
cryptography==42.0.5
|
| 20 |
dashscope==1.14.1
|
requirements_dev.txt
CHANGED
|
@@ -14,6 +14,7 @@ certifi==2024.7.4
|
|
| 14 |
cffi==1.16.0
|
| 15 |
charset-normalizer==3.3.2
|
| 16 |
click==8.1.7
|
|
|
|
| 17 |
coloredlogs==15.0.1
|
| 18 |
cryptography==42.0.5
|
| 19 |
dashscope==1.14.1
|
|
|
|
| 14 |
cffi==1.16.0
|
| 15 |
charset-normalizer==3.3.2
|
| 16 |
click==8.1.7
|
| 17 |
+
cohere==5.6.2
|
| 18 |
coloredlogs==15.0.1
|
| 19 |
cryptography==42.0.5
|
| 20 |
dashscope==1.14.1
|
web/src/assets/svg/llm/cohere.svg
ADDED
|
|
web/src/pages/user-setting/setting-model/constant.ts
CHANGED
|
@@ -22,7 +22,8 @@ export const IconMap = {
|
|
| 22 |
StepFun: 'stepfun',
|
| 23 |
NVIDIA:'nvidia',
|
| 24 |
'LM-Studio':'lm-studio',
|
| 25 |
-
'OpenAI-API-Compatible':'openai-api'
|
|
|
|
| 26 |
};
|
| 27 |
|
| 28 |
export const BedrockRegionList = [
|
|
|
|
| 22 |
StepFun: 'stepfun',
|
| 23 |
NVIDIA:'nvidia',
|
| 24 |
'LM-Studio':'lm-studio',
|
| 25 |
+
'OpenAI-API-Compatible':'openai-api',
|
| 26 |
+
'cohere':'cohere'
|
| 27 |
};
|
| 28 |
|
| 29 |
export const BedrockRegionList = [
|