Add pdf support for QA parser (#1155)
Browse files### What problem does this PR solve?
Support extracting questions and answers from PDF files
### Type of change
- [x] New Feature (non-breaking change which adds functionality)
- rag/app/qa.py +91 -8
- rag/nlp/__init__.py +92 -0
- requirements.txt +3 -0
- requirements_arm.txt +4 -1
- requirements_dev.txt +4 -1
rag/app/qa.py
CHANGED
@@ -13,13 +13,13 @@
|
|
13 |
import re
|
14 |
from copy import deepcopy
|
15 |
from io import BytesIO
|
|
|
16 |
from nltk import word_tokenize
|
17 |
from openpyxl import load_workbook
|
18 |
-
from rag.nlp import is_english, random_choices, find_codec
|
19 |
-
from rag.nlp import rag_tokenizer
|
20 |
-
from
|
21 |
-
|
22 |
-
|
23 |
class Excel(ExcelParser):
|
24 |
def __call__(self, fnm, binary=None, callback=None):
|
25 |
if not binary:
|
@@ -62,12 +62,80 @@ class Excel(ExcelParser):
|
|
62 |
[rmPrefix(q) for q, _ in random_choices(res, k=30) if len(q) > 1])
|
63 |
return res
|
64 |
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
def rmPrefix(txt):
|
67 |
return re.sub(
|
68 |
r"^(问题|答案|回答|user|assistant|Q|A|Question|Answer|问|答)[\t:: ]+", "", txt.strip(), flags=re.IGNORECASE)
|
69 |
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
def beAdoc(d, q, a, eng):
|
72 |
qprefix = "Question: " if eng else "问题:"
|
73 |
aprefix = "Answer: " if eng else "回答:"
|
@@ -145,6 +213,19 @@ def chunk(filename, binary=None, lang="Chinese", callback=None, **kwargs):
|
|
145 |
f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
|
146 |
|
147 |
return res
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
raise NotImplementedError(
|
150 |
"Excel and csv(txt) format files are supported.")
|
@@ -153,6 +234,8 @@ def chunk(filename, binary=None, lang="Chinese", callback=None, **kwargs):
|
|
153 |
if __name__ == "__main__":
|
154 |
import sys
|
155 |
|
156 |
-
def dummy(
|
157 |
pass
|
158 |
-
|
|
|
|
|
|
13 |
import re
|
14 |
from copy import deepcopy
|
15 |
from io import BytesIO
|
16 |
+
from timeit import default_timer as timer
|
17 |
from nltk import word_tokenize
|
18 |
from openpyxl import load_workbook
|
19 |
+
from rag.nlp import is_english, random_choices, find_codec, qbullets_category, add_positions, has_qbullet
|
20 |
+
from rag.nlp import rag_tokenizer, tokenize_table
|
21 |
+
from rag.settings import cron_logger
|
22 |
+
from deepdoc.parser import PdfParser, ExcelParser
|
|
|
23 |
class Excel(ExcelParser):
|
24 |
def __call__(self, fnm, binary=None, callback=None):
|
25 |
if not binary:
|
|
|
62 |
[rmPrefix(q) for q, _ in random_choices(res, k=30) if len(q) > 1])
|
63 |
return res
|
64 |
|
65 |
+
class Pdf(PdfParser):
|
66 |
+
def __call__(self, filename, binary=None, from_page=0,
|
67 |
+
to_page=100000, zoomin=3, callback=None):
|
68 |
+
start = timer()
|
69 |
+
callback(msg="OCR is running...")
|
70 |
+
self.__images__(
|
71 |
+
filename if not binary else binary,
|
72 |
+
zoomin,
|
73 |
+
from_page,
|
74 |
+
to_page,
|
75 |
+
callback
|
76 |
+
)
|
77 |
+
callback(msg="OCR finished")
|
78 |
+
cron_logger.info("OCR({}~{}): {}".format(from_page, to_page, timer() - start))
|
79 |
+
start = timer()
|
80 |
+
self._layouts_rec(zoomin, drop=False)
|
81 |
+
callback(0.63, "Layout analysis finished.")
|
82 |
+
self._table_transformer_job(zoomin)
|
83 |
+
callback(0.65, "Table analysis finished.")
|
84 |
+
self._text_merge()
|
85 |
+
callback(0.67, "Text merging finished")
|
86 |
+
tbls = self._extract_table_figure(True, zoomin, True, True)
|
87 |
+
#self._naive_vertical_merge()
|
88 |
+
# self._concat_downward()
|
89 |
+
#self._filter_forpages()
|
90 |
+
cron_logger.info("layouts: {}".format(timer() - start))
|
91 |
+
sections = [b["text"] for b in self.boxes]
|
92 |
+
bull_x0_list = []
|
93 |
+
q_bull, reg = qbullets_category(sections)
|
94 |
+
if q_bull == -1:
|
95 |
+
raise ValueError("Unable to recognize Q&A structure.")
|
96 |
+
qai_list = []
|
97 |
+
last_q, last_a, last_tag = '', '', ''
|
98 |
+
last_index = -1
|
99 |
+
last_box = {'text':''}
|
100 |
+
last_bull = None
|
101 |
+
for box in self.boxes:
|
102 |
+
section, line_tag = box['text'], self._line_tag(box, zoomin)
|
103 |
+
has_bull, index = has_qbullet(reg, box, last_box, last_index, last_bull, bull_x0_list)
|
104 |
+
last_box, last_index, last_bull = box, index, has_bull
|
105 |
+
if not has_bull: # No question bullet
|
106 |
+
if not last_q:
|
107 |
+
continue
|
108 |
+
else:
|
109 |
+
last_a = f'{last_a}{section}'
|
110 |
+
last_tag = f'{last_tag}{line_tag}'
|
111 |
+
else:
|
112 |
+
if last_q:
|
113 |
+
qai_list.append((last_q, last_a, *self.crop(last_tag, need_position=True)))
|
114 |
+
last_q, last_a, last_tag = '', '', ''
|
115 |
+
last_q = has_bull.group()
|
116 |
+
_, end = has_bull.span()
|
117 |
+
last_a = section[end:]
|
118 |
+
last_tag = line_tag
|
119 |
+
if last_q:
|
120 |
+
qai_list.append((last_q, last_a, *self.crop(last_tag, need_position=True)))
|
121 |
+
return qai_list, tbls
|
122 |
+
|
123 |
def rmPrefix(txt):
|
124 |
return re.sub(
|
125 |
r"^(问题|答案|回答|user|assistant|Q|A|Question|Answer|问|答)[\t:: ]+", "", txt.strip(), flags=re.IGNORECASE)
|
126 |
|
127 |
|
128 |
+
def beAdocPdf(d, q, a, eng, image, poss):
|
129 |
+
qprefix = "Question: " if eng else "问题:"
|
130 |
+
aprefix = "Answer: " if eng else "回答:"
|
131 |
+
d["content_with_weight"] = "\t".join(
|
132 |
+
[qprefix + rmPrefix(q), aprefix + rmPrefix(a)])
|
133 |
+
d["content_ltks"] = rag_tokenizer.tokenize(q)
|
134 |
+
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
|
135 |
+
d["image"] = image
|
136 |
+
add_positions(d, poss)
|
137 |
+
return d
|
138 |
+
|
139 |
def beAdoc(d, q, a, eng):
|
140 |
qprefix = "Question: " if eng else "问题:"
|
141 |
aprefix = "Answer: " if eng else "回答:"
|
|
|
213 |
f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
|
214 |
|
215 |
return res
|
216 |
+
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
|
217 |
+
pdf_parser = Pdf()
|
218 |
+
count = 0
|
219 |
+
qai_list, tbls = pdf_parser(filename if not binary else binary,
|
220 |
+
from_page=0, to_page=10000, callback=callback)
|
221 |
+
|
222 |
+
res = tokenize_table(tbls, doc, eng)
|
223 |
+
|
224 |
+
for q, a, image, poss in qai_list:
|
225 |
+
count += 1
|
226 |
+
res.append(beAdocPdf(deepcopy(doc), q, a, eng, image, poss))
|
227 |
+
return res
|
228 |
+
|
229 |
|
230 |
raise NotImplementedError(
|
231 |
"Excel and csv(txt) format files are supported.")
|
|
|
234 |
if __name__ == "__main__":
|
235 |
import sys
|
236 |
|
237 |
+
def dummy(prog=None, msg=""):
|
238 |
pass
|
239 |
+
import json
|
240 |
+
|
241 |
+
chunk(sys.argv[1], from_page=0, to_page=10, callback=dummy)
|
rag/nlp/__init__.py
CHANGED
@@ -21,6 +21,9 @@ from rag.utils import num_tokens_from_string
|
|
21 |
from . import rag_tokenizer
|
22 |
import re
|
23 |
import copy
|
|
|
|
|
|
|
24 |
|
25 |
all_codecs = [
|
26 |
'utf-8', 'gb2312', 'gbk', 'utf_16', 'ascii', 'big5', 'big5hkscs',
|
@@ -57,6 +60,95 @@ def find_codec(blob):
|
|
57 |
|
58 |
return "utf-8"
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
BULLET_PATTERN = [[
|
62 |
r"第[零一二三四五六七八九十百0-9]+(分?编|部分)",
|
|
|
21 |
from . import rag_tokenizer
|
22 |
import re
|
23 |
import copy
|
24 |
+
import roman_numbers as r
|
25 |
+
from word2number import w2n
|
26 |
+
from cn2an import cn2an
|
27 |
|
28 |
all_codecs = [
|
29 |
'utf-8', 'gb2312', 'gbk', 'utf_16', 'ascii', 'big5', 'big5hkscs',
|
|
|
60 |
|
61 |
return "utf-8"
|
62 |
|
63 |
+
QUESTION_PATTERN = [
|
64 |
+
r"第([零一二三四五六七八九十百0-9]+)问",
|
65 |
+
r"第([零一二三四五六七八九十百0-9]+)条",
|
66 |
+
r"[\((]([零一二三四五六七八九十百]+)[\))]",
|
67 |
+
r"第([0-9]+)问",
|
68 |
+
r"第([0-9]+)条",
|
69 |
+
r"([0-9]{1,2})[\. 、]",
|
70 |
+
r"([零一二三四五六七八九十百]+)[ 、]",
|
71 |
+
r"[\((]([0-9]{1,2})[\))]",
|
72 |
+
r"QUESTION (ONE|TWO|THREE|FOUR|FIVE|SIX|SEVEN|EIGHT|NINE|TEN)",
|
73 |
+
r"QUESTION (I+V?|VI*|XI|IX|X)",
|
74 |
+
r"QUESTION ([0-9]+)",
|
75 |
+
]
|
76 |
+
|
77 |
+
def has_qbullet(reg, box, last_box, last_index, last_bull, bull_x0_list):
|
78 |
+
section, last_section = box['text'], last_box['text']
|
79 |
+
q_reg = r'(\w|\W)*?(?:?|\?|\n|$)+'
|
80 |
+
full_reg = reg + q_reg
|
81 |
+
has_bull = re.match(full_reg, section)
|
82 |
+
index_str = None
|
83 |
+
if has_bull:
|
84 |
+
if 'x0' not in last_box:
|
85 |
+
last_box['x0'] = box['x0']
|
86 |
+
if 'top' not in last_box:
|
87 |
+
last_box['top'] = box['top']
|
88 |
+
if last_bull and box['x0']-last_box['x0']>10:
|
89 |
+
return None, last_index
|
90 |
+
if not last_bull and box['x0'] >= last_box['x0'] and box['top'] - last_box['top'] < 20:
|
91 |
+
return None, last_index
|
92 |
+
avg_bull_x0 = 0
|
93 |
+
if bull_x0_list:
|
94 |
+
avg_bull_x0 = sum(bull_x0_list) / len(bull_x0_list)
|
95 |
+
else:
|
96 |
+
avg_bull_x0 = box['x0']
|
97 |
+
if box['x0'] - avg_bull_x0 > 10:
|
98 |
+
return None, last_index
|
99 |
+
index_str = has_bull.group(1)
|
100 |
+
index = index_int(index_str)
|
101 |
+
if last_section[-1] == ':' or last_section[-1] == ':':
|
102 |
+
return None, last_index
|
103 |
+
if not last_index or index >= last_index:
|
104 |
+
bull_x0_list.append(box['x0'])
|
105 |
+
return has_bull, index
|
106 |
+
if section[-1] == '?' or section[-1] == '?':
|
107 |
+
bull_x0_list.append(box['x0'])
|
108 |
+
return has_bull, index
|
109 |
+
if box['layout_type'] == 'title':
|
110 |
+
bull_x0_list.append(box['x0'])
|
111 |
+
return has_bull, index
|
112 |
+
pure_section = section.lstrip(re.match(reg, section).group()).lower()
|
113 |
+
ask_reg = r'(what|when|where|how|why|which|who|whose|为什么|为啥|哪)'
|
114 |
+
if re.match(ask_reg, pure_section):
|
115 |
+
bull_x0_list.append(box['x0'])
|
116 |
+
return has_bull, index
|
117 |
+
return None, last_index
|
118 |
+
|
119 |
+
def index_int(index_str):
|
120 |
+
res = -1
|
121 |
+
try:
|
122 |
+
res=int(index_str)
|
123 |
+
except ValueError:
|
124 |
+
try:
|
125 |
+
res=w2n.word_to_num(index_str)
|
126 |
+
except ValueError:
|
127 |
+
try:
|
128 |
+
res = cn2an(index_str)
|
129 |
+
except ValueError:
|
130 |
+
try:
|
131 |
+
res = r.number(index_str)
|
132 |
+
except ValueError:
|
133 |
+
return -1
|
134 |
+
return res
|
135 |
+
|
136 |
+
def qbullets_category(sections):
|
137 |
+
global QUESTION_PATTERN
|
138 |
+
hits = [0] * len(QUESTION_PATTERN)
|
139 |
+
for i, pro in enumerate(QUESTION_PATTERN):
|
140 |
+
for sec in sections:
|
141 |
+
if re.match(pro, sec) and not not_bullet(sec):
|
142 |
+
hits[i] += 1
|
143 |
+
break
|
144 |
+
maxium = 0
|
145 |
+
res = -1
|
146 |
+
for i, h in enumerate(hits):
|
147 |
+
if h <= maxium:
|
148 |
+
continue
|
149 |
+
res = i
|
150 |
+
maxium = h
|
151 |
+
return res, QUESTION_PATTERN[res]
|
152 |
|
153 |
BULLET_PATTERN = [[
|
154 |
r"第[零一二三四五六七八九十百0-9]+(分?编|部分)",
|
requirements.txt
CHANGED
@@ -141,3 +141,6 @@ readability-lxml==0.8.1
|
|
141 |
html_text==0.6.2
|
142 |
selenium==4.21.0
|
143 |
webdriver-manager==4.0.1
|
|
|
|
|
|
|
|
141 |
html_text==0.6.2
|
142 |
selenium==4.21.0
|
143 |
webdriver-manager==4.0.1
|
144 |
+
cn2an==0.5.22
|
145 |
+
roman-numbers==1.0.2
|
146 |
+
word2number==1.1
|
requirements_arm.txt
CHANGED
@@ -139,4 +139,7 @@ fasttext==0.9.2
|
|
139 |
volcengine==1.0.141
|
140 |
opencv-python-headless==4.9.0.80
|
141 |
readability-lxml==0.8.1
|
142 |
-
html_text==0.6.2
|
|
|
|
|
|
|
|
139 |
volcengine==1.0.141
|
140 |
opencv-python-headless==4.9.0.80
|
141 |
readability-lxml==0.8.1
|
142 |
+
html_text==0.6.2
|
143 |
+
cn2an==0.5.22
|
144 |
+
roman-numbers==1.0.2
|
145 |
+
word2number==1.1
|
requirements_dev.txt
CHANGED
@@ -126,4 +126,7 @@ fasttext==0.9.2
|
|
126 |
umap-learn
|
127 |
volcengine==1.0.141
|
128 |
readability-lxml==0.8.1
|
129 |
-
html_text==0.6.2
|
|
|
|
|
|
|
|
126 |
umap-learn
|
127 |
volcengine==1.0.141
|
128 |
readability-lxml==0.8.1
|
129 |
+
html_text==0.6.2
|
130 |
+
cn2an==0.5.22
|
131 |
+
roman-numbers==1.0.2
|
132 |
+
word2number==1.1
|