KevinHuSh
commited on
Commit
·
62e78ef
1
Parent(s):
058cd84
rename vision, add layour and tsr recognizer (#70)
Browse files* rename vision, add layour and tsr recognizer
* trivial fixing
- api/apps/conversation_app.py +17 -9
- api/apps/llm_app.py +2 -2
- api/db/db_models.py +3 -2
- api/db/services/llm_service.py +1 -1
- deepdoc/parser/pdf_parser.py +22 -880
- deepdoc/vision/__init__.py +4 -0
- deepdoc/vision/layout_recognizer.py +119 -0
- deepdoc/{visual → vision}/ocr.py +2 -2
- deepdoc/{visual → vision}/ocr.res +0 -0
- deepdoc/{visual → vision}/operators.py +0 -0
- deepdoc/{visual → vision}/postprocess.py +0 -0
- deepdoc/{visual → vision}/recognizer.py +189 -1
- deepdoc/{visual → vision}/seeit.py +0 -0
- deepdoc/vision/table_structure_recognizer.py +556 -0
- deepdoc/visual/__init__.py +0 -2
- rag/svr/task_broker.py +2 -2
api/apps/conversation_app.py
CHANGED
@@ -34,7 +34,6 @@ from rag.utils import num_tokens_from_string, encoder, rmSpace
|
|
34 |
|
35 |
@manager.route('/set', methods=['POST'])
|
36 |
@login_required
|
37 |
-
@validate_request("dialog_id")
|
38 |
def set_conversation():
|
39 |
req = request.json
|
40 |
conv_id = req.get("conversation_id")
|
@@ -145,7 +144,7 @@ def message_fit_in(msg, max_length=4000):
|
|
145 |
|
146 |
@manager.route('/completion', methods=['POST'])
|
147 |
@login_required
|
148 |
-
@validate_request("
|
149 |
def completion():
|
150 |
req = request.json
|
151 |
msg = []
|
@@ -154,12 +153,20 @@ def completion():
|
|
154 |
if m["role"] == "assistant" and not msg: continue
|
155 |
msg.append({"role": m["role"], "content": m["content"]})
|
156 |
try:
|
157 |
-
e,
|
|
|
|
|
|
|
|
|
158 |
if not e:
|
159 |
return get_data_error_result(retmsg="Dialog not found!")
|
160 |
-
del req["
|
161 |
del req["messages"]
|
162 |
-
|
|
|
|
|
|
|
|
|
163 |
except Exception as e:
|
164 |
return server_error_response(e)
|
165 |
|
@@ -194,8 +201,8 @@ def chat(dialog, messages, **kwargs):
|
|
194 |
dialog.vector_similarity_weight, top=1024, aggs=False)
|
195 |
knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
|
196 |
|
197 |
-
if not knowledges and prompt_config
|
198 |
-
return {"answer": prompt_config["empty_response"], "
|
199 |
|
200 |
kwargs["knowledge"] = "\n".join(knowledges)
|
201 |
gen_conf = dialog.llm_setting
|
@@ -205,7 +212,8 @@ def chat(dialog, messages, **kwargs):
|
|
205 |
gen_conf["max_tokens"] = min(gen_conf["max_tokens"], llm.max_tokens - used_token_count)
|
206 |
answer = chat_mdl.chat(prompt_config["system"].format(**kwargs), msg, gen_conf)
|
207 |
|
208 |
-
|
|
|
209 |
[ck["content_ltks"] for ck in kbinfos["chunks"]],
|
210 |
[ck["vector"] for ck in kbinfos["chunks"]],
|
211 |
embd_mdl,
|
@@ -213,7 +221,7 @@ def chat(dialog, messages, **kwargs):
|
|
213 |
vtweight=dialog.vector_similarity_weight)
|
214 |
for c in kbinfos["chunks"]:
|
215 |
if c.get("vector"): del c["vector"]
|
216 |
-
return {"answer": answer, "
|
217 |
|
218 |
|
219 |
def use_sql(question, field_map, tenant_id, chat_mdl):
|
|
|
34 |
|
35 |
@manager.route('/set', methods=['POST'])
|
36 |
@login_required
|
|
|
37 |
def set_conversation():
|
38 |
req = request.json
|
39 |
conv_id = req.get("conversation_id")
|
|
|
144 |
|
145 |
@manager.route('/completion', methods=['POST'])
|
146 |
@login_required
|
147 |
+
@validate_request("conversation_id", "messages")
|
148 |
def completion():
|
149 |
req = request.json
|
150 |
msg = []
|
|
|
153 |
if m["role"] == "assistant" and not msg: continue
|
154 |
msg.append({"role": m["role"], "content": m["content"]})
|
155 |
try:
|
156 |
+
e, conv = ConversationService.get_by_id(req["conversation_id"])
|
157 |
+
if not e:
|
158 |
+
return get_data_error_result(retmsg="Conversation not found!")
|
159 |
+
conv.message.append(msg[-1])
|
160 |
+
e, dia = DialogService.get_by_id(conv.dialog_id)
|
161 |
if not e:
|
162 |
return get_data_error_result(retmsg="Dialog not found!")
|
163 |
+
del req["conversation_id"]
|
164 |
del req["messages"]
|
165 |
+
ans = chat(dia, msg, **req)
|
166 |
+
conv.reference.append(ans["reference"])
|
167 |
+
conv.message.append({"role": "assistant", "content": ans["answer"]})
|
168 |
+
ConversationService.update_by_id(conv.id, conv.to_dict())
|
169 |
+
return get_json_result(data=ans)
|
170 |
except Exception as e:
|
171 |
return server_error_response(e)
|
172 |
|
|
|
201 |
dialog.vector_similarity_weight, top=1024, aggs=False)
|
202 |
knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
|
203 |
|
204 |
+
if not knowledges and prompt_config.get("empty_response"):
|
205 |
+
return {"answer": prompt_config["empty_response"], "reference": kbinfos}
|
206 |
|
207 |
kwargs["knowledge"] = "\n".join(knowledges)
|
208 |
gen_conf = dialog.llm_setting
|
|
|
212 |
gen_conf["max_tokens"] = min(gen_conf["max_tokens"], llm.max_tokens - used_token_count)
|
213 |
answer = chat_mdl.chat(prompt_config["system"].format(**kwargs), msg, gen_conf)
|
214 |
|
215 |
+
if knowledges:
|
216 |
+
answer = retrievaler.insert_citations(answer,
|
217 |
[ck["content_ltks"] for ck in kbinfos["chunks"]],
|
218 |
[ck["vector"] for ck in kbinfos["chunks"]],
|
219 |
embd_mdl,
|
|
|
221 |
vtweight=dialog.vector_similarity_weight)
|
222 |
for c in kbinfos["chunks"]:
|
223 |
if c.get("vector"): del c["vector"]
|
224 |
+
return {"answer": answer, "reference": kbinfos}
|
225 |
|
226 |
|
227 |
def use_sql(question, field_map, tenant_id, chat_mdl):
|
api/apps/llm_app.py
CHANGED
@@ -94,11 +94,11 @@ def list():
|
|
94 |
model_type = request.args.get("model_type")
|
95 |
try:
|
96 |
objs = TenantLLMService.query(tenant_id=current_user.id)
|
97 |
-
|
98 |
llms = LLMService.get_all()
|
99 |
llms = [m.to_dict() for m in llms if m.status == StatusEnum.VALID.value]
|
100 |
for m in llms:
|
101 |
-
m["available"] = m["
|
102 |
|
103 |
res = {}
|
104 |
for m in llms:
|
|
|
94 |
model_type = request.args.get("model_type")
|
95 |
try:
|
96 |
objs = TenantLLMService.query(tenant_id=current_user.id)
|
97 |
+
facts = set([o.to_dict()["llm_factory"] for o in objs if o.api_key])
|
98 |
llms = LLMService.get_all()
|
99 |
llms = [m.to_dict() for m in llms if m.status == StatusEnum.VALID.value]
|
100 |
for m in llms:
|
101 |
+
m["available"] = m["fid"] in facts
|
102 |
|
103 |
res = {}
|
104 |
for m in llms:
|
api/db/db_models.py
CHANGED
@@ -500,7 +500,7 @@ class Document(DataBaseModel):
|
|
500 |
token_num = IntegerField(default=0)
|
501 |
chunk_num = IntegerField(default=0)
|
502 |
progress = FloatField(default=0)
|
503 |
-
progress_msg = CharField(max_length=
|
504 |
process_begin_at = DateTimeField(null=True)
|
505 |
process_duation = FloatField(default=0)
|
506 |
run = CharField(max_length=1, null=True, help_text="start to run processing or cancel.(1: run it; 2: cancel)", default="0")
|
@@ -518,7 +518,7 @@ class Task(DataBaseModel):
|
|
518 |
begin_at = DateTimeField(null=True)
|
519 |
process_duation = FloatField(default=0)
|
520 |
progress = FloatField(default=0)
|
521 |
-
progress_msg = CharField(max_length=
|
522 |
|
523 |
|
524 |
class Dialog(DataBaseModel):
|
@@ -561,6 +561,7 @@ class Conversation(DataBaseModel):
|
|
561 |
dialog_id = CharField(max_length=32, null=False, index=True)
|
562 |
name = CharField(max_length=255, null=True, help_text="converastion name")
|
563 |
message = JSONField(null=True)
|
|
|
564 |
|
565 |
class Meta:
|
566 |
db_table = "conversation"
|
|
|
500 |
token_num = IntegerField(default=0)
|
501 |
chunk_num = IntegerField(default=0)
|
502 |
progress = FloatField(default=0)
|
503 |
+
progress_msg = CharField(max_length=4096, null=True, help_text="process message", default="")
|
504 |
process_begin_at = DateTimeField(null=True)
|
505 |
process_duation = FloatField(default=0)
|
506 |
run = CharField(max_length=1, null=True, help_text="start to run processing or cancel.(1: run it; 2: cancel)", default="0")
|
|
|
518 |
begin_at = DateTimeField(null=True)
|
519 |
process_duation = FloatField(default=0)
|
520 |
progress = FloatField(default=0)
|
521 |
+
progress_msg = CharField(max_length=4096, null=True, help_text="process message", default="")
|
522 |
|
523 |
|
524 |
class Dialog(DataBaseModel):
|
|
|
561 |
dialog_id = CharField(max_length=32, null=False, index=True)
|
562 |
name = CharField(max_length=255, null=True, help_text="converastion name")
|
563 |
message = JSONField(null=True)
|
564 |
+
reference = JSONField(null=True, default=[])
|
565 |
|
566 |
class Meta:
|
567 |
db_table = "conversation"
|
api/db/services/llm_service.py
CHANGED
@@ -75,7 +75,7 @@ class TenantLLMService(CommonService):
|
|
75 |
|
76 |
model_config = cls.get_api_key(tenant_id, mdlnm)
|
77 |
if not model_config:
|
78 |
-
raise LookupError("Model({}) not
|
79 |
model_config = model_config.to_dict()
|
80 |
if llm_type == LLMType.EMBEDDING.value:
|
81 |
if model_config["llm_factory"] not in EmbeddingModel:
|
|
|
75 |
|
76 |
model_config = cls.get_api_key(tenant_id, mdlnm)
|
77 |
if not model_config:
|
78 |
+
raise LookupError("Model({}) not authorized".format(mdlnm))
|
79 |
model_config = model_config.to_dict()
|
80 |
if llm_type == LLMType.EMBEDDING.value:
|
81 |
if model_config["llm_factory"] not in EmbeddingModel:
|
deepdoc/parser/pdf_parser.py
CHANGED
@@ -1,9 +1,7 @@
|
|
1 |
# -*- coding: utf-8 -*-
|
2 |
-
import os
|
3 |
import random
|
4 |
|
5 |
import fitz
|
6 |
-
import requests
|
7 |
import xgboost as xgb
|
8 |
from io import BytesIO
|
9 |
import torch
|
@@ -14,9 +12,8 @@ from PIL import Image
|
|
14 |
import numpy as np
|
15 |
|
16 |
from api.db import ParserType
|
17 |
-
from deepdoc.
|
18 |
from rag.nlp import huqie
|
19 |
-
from collections import Counter
|
20 |
from copy import deepcopy
|
21 |
from huggingface_hub import hf_hub_download
|
22 |
|
@@ -29,29 +26,8 @@ class HuParser:
|
|
29 |
self.ocr = OCR()
|
30 |
if not hasattr(self, "model_speciess"):
|
31 |
self.model_speciess = ParserType.GENERAL.value
|
32 |
-
self.
|
33 |
-
|
34 |
-
"Text",
|
35 |
-
"Title",
|
36 |
-
"Figure",
|
37 |
-
"Figure caption",
|
38 |
-
"Table",
|
39 |
-
"Table caption",
|
40 |
-
"Header",
|
41 |
-
"Footer",
|
42 |
-
"Reference",
|
43 |
-
"Equation",
|
44 |
-
]
|
45 |
-
self.tsr_labels = [
|
46 |
-
"table",
|
47 |
-
"table column",
|
48 |
-
"table row",
|
49 |
-
"table column header",
|
50 |
-
"table projected row header",
|
51 |
-
"table spanning cell",
|
52 |
-
]
|
53 |
-
self.layouter = Recognizer(self.layout_labels, "layout", "/data/newpeak/medical-gpt/res/ppdet/")
|
54 |
-
self.tbl_det = Recognizer(self.tsr_labels, "tsr", "/data/newpeak/medical-gpt/res/ppdet.tbl/")
|
55 |
|
56 |
self.updown_cnt_mdl = xgb.Booster()
|
57 |
if torch.cuda.is_available():
|
@@ -70,39 +46,6 @@ class HuParser:
|
|
70 |
|
71 |
"""
|
72 |
|
73 |
-
def __remote_call(self, species, images, thr=0.7):
|
74 |
-
url = os.environ.get("INFINIFLOW_SERVER")
|
75 |
-
token = os.environ.get("INFINIFLOW_TOKEN")
|
76 |
-
if not url or not token:
|
77 |
-
logging.warning("INFINIFLOW_SERVER is not specified. To maximize the effectiveness, please visit https://github.com/infiniflow/ragflow, and sign in the our demo web site to get token. It's FREE! Using 'export' to set both environment variables: INFINIFLOW_SERVER and INFINIFLOW_TOKEN.")
|
78 |
-
return [[] for _ in range(len(images))]
|
79 |
-
|
80 |
-
def convert_image_to_bytes(PILimage):
|
81 |
-
image = BytesIO()
|
82 |
-
PILimage.save(image, format='png')
|
83 |
-
image.seek(0)
|
84 |
-
return image.getvalue()
|
85 |
-
|
86 |
-
images = [convert_image_to_bytes(img) for img in images]
|
87 |
-
|
88 |
-
def remote_call():
|
89 |
-
nonlocal images, thr
|
90 |
-
res = requests.post(url+"/v1/layout/detect/"+species, files=[("image", img) for img in images], data={"threashold": thr},
|
91 |
-
headers={"Authorization": token}, timeout=len(images) * 10)
|
92 |
-
res = res.json()
|
93 |
-
if res["retcode"] != 0: raise RuntimeError(res["retmsg"])
|
94 |
-
return res["data"]
|
95 |
-
|
96 |
-
for _ in range(3):
|
97 |
-
try:
|
98 |
-
return remote_call()
|
99 |
-
except RuntimeError as e:
|
100 |
-
raise e
|
101 |
-
except Exception as e:
|
102 |
-
logging.error("layout_predict:"+str(e))
|
103 |
-
return remote_call()
|
104 |
-
|
105 |
-
|
106 |
def __char_width(self, c):
|
107 |
return (c["x1"] - c["x0"]) // len(c["text"])
|
108 |
|
@@ -188,20 +131,6 @@ class HuParser:
|
|
188 |
]
|
189 |
return fea
|
190 |
|
191 |
-
@staticmethod
|
192 |
-
def sort_Y_firstly(arr, threashold):
|
193 |
-
# sort using y1 first and then x1
|
194 |
-
arr = sorted(arr, key=lambda r: (r["top"], r["x0"]))
|
195 |
-
for i in range(len(arr) - 1):
|
196 |
-
for j in range(i, -1, -1):
|
197 |
-
# restore the order using th
|
198 |
-
if abs(arr[j + 1]["top"] - arr[j]["top"]) < threashold \
|
199 |
-
and arr[j + 1]["x0"] < arr[j]["x0"]:
|
200 |
-
tmp = deepcopy(arr[j])
|
201 |
-
arr[j] = deepcopy(arr[j + 1])
|
202 |
-
arr[j + 1] = deepcopy(tmp)
|
203 |
-
return arr
|
204 |
-
|
205 |
@staticmethod
|
206 |
def sort_X_by_page(arr, threashold):
|
207 |
# sort using y1 first and then x1
|
@@ -217,61 +146,6 @@ class HuParser:
|
|
217 |
arr[j + 1] = tmp
|
218 |
return arr
|
219 |
|
220 |
-
@staticmethod
|
221 |
-
def sort_R_firstly(arr, thr=0):
|
222 |
-
# sort using y1 first and then x1
|
223 |
-
# sorted(arr, key=lambda r: (r["top"], r["x0"]))
|
224 |
-
arr = HuParser.sort_Y_firstly(arr, thr)
|
225 |
-
for i in range(len(arr) - 1):
|
226 |
-
for j in range(i, -1, -1):
|
227 |
-
if "R" not in arr[j] or "R" not in arr[j + 1]:
|
228 |
-
continue
|
229 |
-
if arr[j + 1]["R"] < arr[j]["R"] \
|
230 |
-
or (
|
231 |
-
arr[j + 1]["R"] == arr[j]["R"]
|
232 |
-
and arr[j + 1]["x0"] < arr[j]["x0"]
|
233 |
-
):
|
234 |
-
tmp = arr[j]
|
235 |
-
arr[j] = arr[j + 1]
|
236 |
-
arr[j + 1] = tmp
|
237 |
-
return arr
|
238 |
-
|
239 |
-
@staticmethod
|
240 |
-
def sort_X_firstly(arr, threashold, copy=True):
|
241 |
-
# sort using y1 first and then x1
|
242 |
-
arr = sorted(arr, key=lambda r: (r["x0"], r["top"]))
|
243 |
-
for i in range(len(arr) - 1):
|
244 |
-
for j in range(i, -1, -1):
|
245 |
-
# restore the order using th
|
246 |
-
if abs(arr[j + 1]["x0"] - arr[j]["x0"]) < threashold \
|
247 |
-
and arr[j + 1]["top"] < arr[j]["top"]:
|
248 |
-
tmp = deepcopy(arr[j]) if copy else arr[j]
|
249 |
-
arr[j] = deepcopy(arr[j + 1]) if copy else arr[j + 1]
|
250 |
-
arr[j + 1] = deepcopy(tmp) if copy else tmp
|
251 |
-
return arr
|
252 |
-
|
253 |
-
@staticmethod
|
254 |
-
def sort_C_firstly(arr, thr=0):
|
255 |
-
# sort using y1 first and then x1
|
256 |
-
# sorted(arr, key=lambda r: (r["x0"], r["top"]))
|
257 |
-
arr = HuParser.sort_X_firstly(arr, thr)
|
258 |
-
for i in range(len(arr) - 1):
|
259 |
-
for j in range(i, -1, -1):
|
260 |
-
# restore the order using th
|
261 |
-
if "C" not in arr[j] or "C" not in arr[j + 1]:
|
262 |
-
continue
|
263 |
-
if arr[j + 1]["C"] < arr[j]["C"] \
|
264 |
-
or (
|
265 |
-
arr[j + 1]["C"] == arr[j]["C"]
|
266 |
-
and arr[j + 1]["top"] < arr[j]["top"]
|
267 |
-
):
|
268 |
-
tmp = arr[j]
|
269 |
-
arr[j] = arr[j + 1]
|
270 |
-
arr[j + 1] = tmp
|
271 |
-
return arr
|
272 |
-
|
273 |
-
return sorted(arr, key=lambda r: (r.get("C", r["x0"]), r["top"]))
|
274 |
-
|
275 |
def _has_color(self, o):
|
276 |
if o.get("ncs", "") == "DeviceGray":
|
277 |
if o["stroking_color"] and o["stroking_color"][0] == 1 and o["non_stroking_color"] and \
|
@@ -280,172 +154,6 @@ class HuParser:
|
|
280 |
return False
|
281 |
return True
|
282 |
|
283 |
-
def __overlapped_area(self, a, b, ratio=True):
|
284 |
-
tp, btm, x0, x1 = a["top"], a["bottom"], a["x0"], a["x1"]
|
285 |
-
if b["x0"] > x1 or b["x1"] < x0:
|
286 |
-
return 0
|
287 |
-
if b["bottom"] < tp or b["top"] > btm:
|
288 |
-
return 0
|
289 |
-
x0_ = max(b["x0"], x0)
|
290 |
-
x1_ = min(b["x1"], x1)
|
291 |
-
assert x0_ <= x1_, "Fuckedup! T:{},B:{},X0:{},X1:{} ==> {}".format(
|
292 |
-
tp, btm, x0, x1, b)
|
293 |
-
tp_ = max(b["top"], tp)
|
294 |
-
btm_ = min(b["bottom"], btm)
|
295 |
-
assert tp_ <= btm_, "Fuckedup! T:{},B:{},X0:{},X1:{} => {}".format(
|
296 |
-
tp, btm, x0, x1, b)
|
297 |
-
ov = (btm_ - tp_) * (x1_ - x0_) if x1 - \
|
298 |
-
x0 != 0 and btm - tp != 0 else 0
|
299 |
-
if ov > 0 and ratio:
|
300 |
-
ov /= (x1 - x0) * (btm - tp)
|
301 |
-
return ov
|
302 |
-
|
303 |
-
def __find_overlapped_with_threashold(self, box, boxes, thr=0.3):
|
304 |
-
if not boxes:
|
305 |
-
return
|
306 |
-
max_overlaped_i, max_overlaped, _max_overlaped = None, thr, 0
|
307 |
-
s, e = 0, len(boxes)
|
308 |
-
for i in range(s, e):
|
309 |
-
ov = self.__overlapped_area(box, boxes[i])
|
310 |
-
_ov = self.__overlapped_area(boxes[i], box)
|
311 |
-
if (ov, _ov) < (max_overlaped, _max_overlaped):
|
312 |
-
continue
|
313 |
-
max_overlaped_i = i
|
314 |
-
max_overlaped = ov
|
315 |
-
_max_overlaped = _ov
|
316 |
-
|
317 |
-
return max_overlaped_i
|
318 |
-
|
319 |
-
def __find_overlapped(self, box, boxes_sorted_by_y, naive=False):
|
320 |
-
if not boxes_sorted_by_y:
|
321 |
-
return
|
322 |
-
bxs = boxes_sorted_by_y
|
323 |
-
s, e, ii = 0, len(bxs), 0
|
324 |
-
while s < e and not naive:
|
325 |
-
ii = (e + s) // 2
|
326 |
-
pv = bxs[ii]
|
327 |
-
if box["bottom"] < pv["top"]:
|
328 |
-
e = ii
|
329 |
-
continue
|
330 |
-
if box["top"] > pv["bottom"]:
|
331 |
-
s = ii + 1
|
332 |
-
continue
|
333 |
-
break
|
334 |
-
while s < ii:
|
335 |
-
if box["top"] > bxs[s]["bottom"]:
|
336 |
-
s += 1
|
337 |
-
break
|
338 |
-
while e - 1 > ii:
|
339 |
-
if box["bottom"] < bxs[e - 1]["top"]:
|
340 |
-
e -= 1
|
341 |
-
break
|
342 |
-
|
343 |
-
max_overlaped_i, max_overlaped = None, 0
|
344 |
-
for i in range(s, e):
|
345 |
-
ov = self.__overlapped_area(bxs[i], box)
|
346 |
-
if ov <= max_overlaped:
|
347 |
-
continue
|
348 |
-
max_overlaped_i = i
|
349 |
-
max_overlaped = ov
|
350 |
-
|
351 |
-
return max_overlaped_i
|
352 |
-
|
353 |
-
def _is_garbage(self, b):
|
354 |
-
patt = [r"^•+$", r"(版权归©|免责条款|地址[::])", r"\.{3,}", "^[0-9]{1,2} / ?[0-9]{1,2}$",
|
355 |
-
r"^[0-9]{1,2} of [0-9]{1,2}$", "^http://[^ ]{12,}",
|
356 |
-
"(资料|数据)来源[::]", "[0-9a-z._-]+@[a-z0-9-]+\\.[a-z]{2,3}",
|
357 |
-
"\\(cid *: *[0-9]+ *\\)"
|
358 |
-
]
|
359 |
-
return any([re.search(p, b["text"]) for p in patt])
|
360 |
-
|
361 |
-
def __layouts_cleanup(self, boxes, layouts, far=2, thr=0.7):
|
362 |
-
def notOverlapped(a, b):
|
363 |
-
return any([a["x1"] < b["x0"],
|
364 |
-
a["x0"] > b["x1"],
|
365 |
-
a["bottom"] < b["top"],
|
366 |
-
a["top"] > b["bottom"]])
|
367 |
-
|
368 |
-
i = 0
|
369 |
-
while i + 1 < len(layouts):
|
370 |
-
j = i + 1
|
371 |
-
while j < min(i + far, len(layouts)) \
|
372 |
-
and (layouts[i].get("type", "") != layouts[j].get("type", "")
|
373 |
-
or notOverlapped(layouts[i], layouts[j])):
|
374 |
-
j += 1
|
375 |
-
if j >= min(i + far, len(layouts)):
|
376 |
-
i += 1
|
377 |
-
continue
|
378 |
-
if self.__overlapped_area(layouts[i], layouts[j]) < thr \
|
379 |
-
and self.__overlapped_area(layouts[j], layouts[i]) < thr:
|
380 |
-
i += 1
|
381 |
-
continue
|
382 |
-
|
383 |
-
if layouts[i].get("score") and layouts[j].get("score"):
|
384 |
-
if layouts[i]["score"] > layouts[j]["score"]:
|
385 |
-
layouts.pop(j)
|
386 |
-
else:
|
387 |
-
layouts.pop(i)
|
388 |
-
continue
|
389 |
-
|
390 |
-
area_i, area_i_1 = 0, 0
|
391 |
-
for b in boxes:
|
392 |
-
if not notOverlapped(b, layouts[i]):
|
393 |
-
area_i += self.__overlapped_area(b, layouts[i], False)
|
394 |
-
if not notOverlapped(b, layouts[j]):
|
395 |
-
area_i_1 += self.__overlapped_area(b, layouts[j], False)
|
396 |
-
|
397 |
-
if area_i > area_i_1:
|
398 |
-
layouts.pop(j)
|
399 |
-
else:
|
400 |
-
layouts.pop(i)
|
401 |
-
|
402 |
-
return layouts
|
403 |
-
|
404 |
-
def __table_tsr(self, images):
|
405 |
-
tbls = self.tbl_det(images, thr=0.5)
|
406 |
-
res = []
|
407 |
-
# align left&right for rows, align top&bottom for columns
|
408 |
-
for tbl in tbls:
|
409 |
-
lts = [{"label": b["type"],
|
410 |
-
"score": b["score"],
|
411 |
-
"x0": b["bbox"][0], "x1": b["bbox"][2],
|
412 |
-
"top": b["bbox"][1], "bottom": b["bbox"][-1]
|
413 |
-
} for b in tbl]
|
414 |
-
if not lts:
|
415 |
-
continue
|
416 |
-
|
417 |
-
left = [b["x0"] for b in lts if b["label"].find(
|
418 |
-
"row") > 0 or b["label"].find("header") > 0]
|
419 |
-
right = [b["x1"] for b in lts if b["label"].find(
|
420 |
-
"row") > 0 or b["label"].find("header") > 0]
|
421 |
-
if not left:
|
422 |
-
continue
|
423 |
-
left = np.median(left) if len(left) > 4 else np.min(left)
|
424 |
-
right = np.median(right) if len(right) > 4 else np.max(right)
|
425 |
-
for b in lts:
|
426 |
-
if b["label"].find("row") > 0 or b["label"].find("header") > 0:
|
427 |
-
if b["x0"] > left:
|
428 |
-
b["x0"] = left
|
429 |
-
if b["x1"] < right:
|
430 |
-
b["x1"] = right
|
431 |
-
|
432 |
-
top = [b["top"] for b in lts if b["label"] == "table column"]
|
433 |
-
bottom = [b["bottom"] for b in lts if b["label"] == "table column"]
|
434 |
-
if not top:
|
435 |
-
res.append(lts)
|
436 |
-
continue
|
437 |
-
top = np.median(top) if len(top) > 4 else np.min(top)
|
438 |
-
bottom = np.median(bottom) if len(bottom) > 4 else np.max(bottom)
|
439 |
-
for b in lts:
|
440 |
-
if b["label"] == "table column":
|
441 |
-
if b["top"] > top:
|
442 |
-
b["top"] = top
|
443 |
-
if b["bottom"] < bottom:
|
444 |
-
b["bottom"] = bottom
|
445 |
-
|
446 |
-
res.append(lts)
|
447 |
-
return res
|
448 |
-
|
449 |
def _table_transformer_job(self, ZM):
|
450 |
logging.info("Table processing...")
|
451 |
imgs, pos = [], []
|
@@ -471,7 +179,7 @@ class HuParser:
|
|
471 |
assert len(self.page_images) == len(tbcnt) - 1
|
472 |
if not imgs:
|
473 |
return
|
474 |
-
recos = self.
|
475 |
tbcnt = np.cumsum(tbcnt)
|
476 |
for i in range(len(tbcnt) - 1): # for page
|
477 |
pg = []
|
@@ -493,10 +201,10 @@ class HuParser:
|
|
493 |
self.tb_cpns.extend(pg)
|
494 |
|
495 |
def gather(kwd, fzy=10, ption=0.6):
|
496 |
-
eles =
|
497 |
[r for r in self.tb_cpns if re.match(kwd, r["label"])], fzy)
|
498 |
-
eles =
|
499 |
-
return
|
500 |
|
501 |
# add R,H,C,SP tag to boxes within table layout
|
502 |
headers = gather(r".*header$")
|
@@ -504,17 +212,17 @@ class HuParser:
|
|
504 |
spans = gather(r".*spanning")
|
505 |
clmns = sorted([r for r in self.tb_cpns if re.match(
|
506 |
r"table column$", r["label"])], key=lambda x: (x["pn"], x["layoutno"], x["x0"]))
|
507 |
-
clmns =
|
508 |
for b in self.boxes:
|
509 |
if b.get("layout_type", "") != "table":
|
510 |
continue
|
511 |
-
ii =
|
512 |
if ii is not None:
|
513 |
b["R"] = ii
|
514 |
b["R_top"] = rows[ii]["top"]
|
515 |
b["R_bott"] = rows[ii]["bottom"]
|
516 |
|
517 |
-
ii =
|
518 |
if ii is not None:
|
519 |
b["H_top"] = headers[ii]["top"]
|
520 |
b["H_bott"] = headers[ii]["bottom"]
|
@@ -522,13 +230,13 @@ class HuParser:
|
|
522 |
b["H_right"] = headers[ii]["x1"]
|
523 |
b["H"] = ii
|
524 |
|
525 |
-
ii =
|
526 |
if ii is not None:
|
527 |
b["C"] = ii
|
528 |
b["C_left"] = clmns[ii]["x0"]
|
529 |
b["C_right"] = clmns[ii]["x1"]
|
530 |
|
531 |
-
ii =
|
532 |
if ii is not None:
|
533 |
b["H_top"] = spans[ii]["top"]
|
534 |
b["H_bott"] = spans[ii]["bottom"]
|
@@ -542,7 +250,7 @@ class HuParser:
|
|
542 |
self.boxes.append([])
|
543 |
return
|
544 |
bxs = [(line[0], line[1][0]) for line in bxs]
|
545 |
-
bxs =
|
546 |
[{"x0": b[0][0] / ZM, "x1": b[1][0] / ZM,
|
547 |
"top": b[0][1] / ZM, "text": "", "txt": t,
|
548 |
"bottom": b[-1][1] / ZM,
|
@@ -551,8 +259,8 @@ class HuParser:
|
|
551 |
)
|
552 |
|
553 |
# merge chars in the same rect
|
554 |
-
for c in
|
555 |
-
ii =
|
556 |
if ii is None:
|
557 |
self.lefted_chars.append(c)
|
558 |
continue
|
@@ -573,91 +281,11 @@ class HuParser:
|
|
573 |
if self.mean_height[-1] == 0:
|
574 |
self.mean_height[-1] = np.median([b["bottom"] - b["top"]
|
575 |
for b in bxs])
|
576 |
-
|
577 |
self.boxes.append(bxs)
|
578 |
|
579 |
def _layouts_rec(self, ZM):
|
580 |
assert len(self.page_images) == len(self.boxes)
|
581 |
-
|
582 |
-
boxes = []
|
583 |
-
layouts = self.layouter(self.page_images)
|
584 |
-
#save_results(self.page_images, layouts, self.layout_labels, output_dir='output/', threshold=0.7)
|
585 |
-
assert len(self.page_images) == len(layouts)
|
586 |
-
for pn, lts in enumerate(layouts):
|
587 |
-
bxs = self.boxes[pn]
|
588 |
-
lts = [{"type": b["type"],
|
589 |
-
"score": float(b["score"]),
|
590 |
-
"x0": b["bbox"][0] / ZM, "x1": b["bbox"][2] / ZM,
|
591 |
-
"top": b["bbox"][1] / ZM, "bottom": b["bbox"][-1] / ZM,
|
592 |
-
"page_number": pn,
|
593 |
-
} for b in lts]
|
594 |
-
lts = self.sort_Y_firstly(lts, self.mean_height[pn] / 2)
|
595 |
-
lts = self.__layouts_cleanup(bxs, lts)
|
596 |
-
self.page_layout.append(lts)
|
597 |
-
|
598 |
-
# Tag layout type, layouts are ready
|
599 |
-
def findLayout(ty):
|
600 |
-
nonlocal bxs, lts
|
601 |
-
lts_ = [lt for lt in lts if lt["type"] == ty]
|
602 |
-
i = 0
|
603 |
-
while i < len(bxs):
|
604 |
-
if bxs[i].get("layout_type"):
|
605 |
-
i += 1
|
606 |
-
continue
|
607 |
-
if self._is_garbage(bxs[i]):
|
608 |
-
logging.debug("GARBAGE: " + bxs[i]["text"])
|
609 |
-
bxs.pop(i)
|
610 |
-
continue
|
611 |
-
|
612 |
-
ii = self.__find_overlapped_with_threashold(bxs[i], lts_,
|
613 |
-
thr=0.4)
|
614 |
-
if ii is None: # belong to nothing
|
615 |
-
bxs[i]["layout_type"] = ""
|
616 |
-
i += 1
|
617 |
-
continue
|
618 |
-
lts_[ii]["visited"] = True
|
619 |
-
if lts_[ii]["type"] in ["footer", "header", "reference"]:
|
620 |
-
if lts_[ii]["type"] not in self.garbages:
|
621 |
-
self.garbages[lts_[ii]["type"]] = []
|
622 |
-
self.garbages[lts_[ii]["type"]].append(bxs[i]["text"])
|
623 |
-
logging.debug("GARBAGE: " + bxs[i]["text"])
|
624 |
-
bxs.pop(i)
|
625 |
-
continue
|
626 |
-
|
627 |
-
bxs[i]["layoutno"] = f"{ty}-{ii}"
|
628 |
-
bxs[i]["layout_type"] = lts_[ii]["type"]
|
629 |
-
i += 1
|
630 |
-
|
631 |
-
for lt in ["footer", "header", "reference", "figure caption",
|
632 |
-
"table caption", "title", "text", "table", "figure"]:
|
633 |
-
findLayout(lt)
|
634 |
-
|
635 |
-
# add box to figure layouts which has not text box
|
636 |
-
for i, lt in enumerate(
|
637 |
-
[lt for lt in lts if lt["type"] == "figure"]):
|
638 |
-
if lt.get("visited"):
|
639 |
-
continue
|
640 |
-
lt = deepcopy(lt)
|
641 |
-
del lt["type"]
|
642 |
-
lt["text"] = ""
|
643 |
-
lt["layout_type"] = "figure"
|
644 |
-
lt["layoutno"] = f"figure-{i}"
|
645 |
-
bxs.append(lt)
|
646 |
-
|
647 |
-
boxes.extend(bxs)
|
648 |
-
|
649 |
-
self.boxes = boxes
|
650 |
-
|
651 |
-
garbage = set()
|
652 |
-
for k in self.garbages.keys():
|
653 |
-
self.garbages[k] = Counter(self.garbages[k])
|
654 |
-
for g, c in self.garbages[k].items():
|
655 |
-
if c > 1:
|
656 |
-
garbage.add(g)
|
657 |
-
|
658 |
-
logging.debug("GARBAGE:" + ",".join(garbage))
|
659 |
-
self.boxes = [b for b in self.boxes if b["text"].strip() not in garbage]
|
660 |
-
|
661 |
# cumlative Y
|
662 |
for i in range(len(self.boxes)):
|
663 |
self.boxes[i]["top"] += \
|
@@ -710,7 +338,7 @@ class HuParser:
|
|
710 |
self.boxes = bxs
|
711 |
|
712 |
def _naive_vertical_merge(self):
|
713 |
-
bxs =
|
714 |
i = 0
|
715 |
while i + 1 < len(bxs):
|
716 |
b = bxs[i]
|
@@ -850,7 +478,7 @@ class HuParser:
|
|
850 |
t["layout_type"] = c["layout_type"]
|
851 |
boxes.append(t)
|
852 |
|
853 |
-
self.boxes =
|
854 |
|
855 |
def _filter_forpages(self):
|
856 |
if not self.boxes:
|
@@ -916,492 +544,6 @@ class HuParser:
|
|
916 |
b_["top"] = b["top"]
|
917 |
self.boxes.pop(i)
|
918 |
|
919 |
-
def _blockType(self, b):
|
920 |
-
patt = [
|
921 |
-
("^(20|19)[0-9]{2}[年/-][0-9]{1,2}[月/-][0-9]{1,2}日*$", "Dt"),
|
922 |
-
(r"^(20|19)[0-9]{2}年$", "Dt"),
|
923 |
-
(r"^(20|19)[0-9]{2}[年-][0-9]{1,2}月*$", "Dt"),
|
924 |
-
("^[0-9]{1,2}[月-][0-9]{1,2}日*$", "Dt"),
|
925 |
-
(r"^第*[一二三四1-4]季度$", "Dt"),
|
926 |
-
(r"^(20|19)[0-9]{2}年*[一二三四1-4]季度$", "Dt"),
|
927 |
-
(r"^(20|19)[0-9]{2}[ABCDE]$", "Dt"),
|
928 |
-
("^[0-9.,+%/ -]+$", "Nu"),
|
929 |
-
(r"^[0-9A-Z/\._~-]+$", "Ca"),
|
930 |
-
(r"^[A-Z]*[a-z' -]+$", "En"),
|
931 |
-
(r"^[0-9.,+-]+[0-9A-Za-z/$¥%<>()()' -]+$", "NE"),
|
932 |
-
(r"^.{1}$", "Sg")
|
933 |
-
]
|
934 |
-
for p, n in patt:
|
935 |
-
if re.search(p, b["text"].strip()):
|
936 |
-
return n
|
937 |
-
tks = [t for t in huqie.qie(b["text"]).split(" ") if len(t) > 1]
|
938 |
-
if len(tks) > 3:
|
939 |
-
if len(tks) < 12:
|
940 |
-
return "Tx"
|
941 |
-
else:
|
942 |
-
return "Lx"
|
943 |
-
|
944 |
-
if len(tks) == 1 and huqie.tag(tks[0]) == "nr":
|
945 |
-
return "Nr"
|
946 |
-
|
947 |
-
return "Ot"
|
948 |
-
|
949 |
-
def __cal_spans(self, boxes, rows, cols, tbl, html=True):
|
950 |
-
# caculate span
|
951 |
-
clft = [np.mean([c.get("C_left", c["x0"]) for c in cln])
|
952 |
-
for cln in cols]
|
953 |
-
crgt = [np.mean([c.get("C_right", c["x1"]) for c in cln])
|
954 |
-
for cln in cols]
|
955 |
-
rtop = [np.mean([c.get("R_top", c["top"]) for c in row])
|
956 |
-
for row in rows]
|
957 |
-
rbtm = [np.mean([c.get("R_btm", c["bottom"])
|
958 |
-
for c in row]) for row in rows]
|
959 |
-
for b in boxes:
|
960 |
-
if "SP" not in b:
|
961 |
-
continue
|
962 |
-
b["colspan"] = [b["cn"]]
|
963 |
-
b["rowspan"] = [b["rn"]]
|
964 |
-
# col span
|
965 |
-
for j in range(0, len(clft)):
|
966 |
-
if j == b["cn"]:
|
967 |
-
continue
|
968 |
-
if clft[j] + (crgt[j] - clft[j]) / 2 < b["H_left"]:
|
969 |
-
continue
|
970 |
-
if crgt[j] - (crgt[j] - clft[j]) / 2 > b["H_right"]:
|
971 |
-
continue
|
972 |
-
b["colspan"].append(j)
|
973 |
-
# row span
|
974 |
-
for j in range(0, len(rtop)):
|
975 |
-
if j == b["rn"]:
|
976 |
-
continue
|
977 |
-
if rtop[j] + (rbtm[j] - rtop[j]) / 2 < b["H_top"]:
|
978 |
-
continue
|
979 |
-
if rbtm[j] - (rbtm[j] - rtop[j]) / 2 > b["H_bott"]:
|
980 |
-
continue
|
981 |
-
b["rowspan"].append(j)
|
982 |
-
|
983 |
-
def join(arr):
|
984 |
-
if not arr:
|
985 |
-
return ""
|
986 |
-
return "".join([t["text"] for t in arr])
|
987 |
-
|
988 |
-
# rm the spaning cells
|
989 |
-
for i in range(len(tbl)):
|
990 |
-
for j, arr in enumerate(tbl[i]):
|
991 |
-
if not arr:
|
992 |
-
continue
|
993 |
-
if all(["rowspan" not in a and "colspan" not in a for a in arr]):
|
994 |
-
continue
|
995 |
-
rowspan, colspan = [], []
|
996 |
-
for a in arr:
|
997 |
-
if isinstance(a.get("rowspan", 0), list):
|
998 |
-
rowspan.extend(a["rowspan"])
|
999 |
-
if isinstance(a.get("colspan", 0), list):
|
1000 |
-
colspan.extend(a["colspan"])
|
1001 |
-
rowspan, colspan = set(rowspan), set(colspan)
|
1002 |
-
if len(rowspan) < 2 and len(colspan) < 2:
|
1003 |
-
for a in arr:
|
1004 |
-
if "rowspan" in a:
|
1005 |
-
del a["rowspan"]
|
1006 |
-
if "colspan" in a:
|
1007 |
-
del a["colspan"]
|
1008 |
-
continue
|
1009 |
-
rowspan, colspan = sorted(rowspan), sorted(colspan)
|
1010 |
-
rowspan = list(range(rowspan[0], rowspan[-1] + 1))
|
1011 |
-
colspan = list(range(colspan[0], colspan[-1] + 1))
|
1012 |
-
assert i in rowspan, rowspan
|
1013 |
-
assert j in colspan, colspan
|
1014 |
-
arr = []
|
1015 |
-
for r in rowspan:
|
1016 |
-
for c in colspan:
|
1017 |
-
arr_txt = join(arr)
|
1018 |
-
if tbl[r][c] and join(tbl[r][c]) != arr_txt:
|
1019 |
-
arr.extend(tbl[r][c])
|
1020 |
-
tbl[r][c] = None if html else arr
|
1021 |
-
for a in arr:
|
1022 |
-
if len(rowspan) > 1:
|
1023 |
-
a["rowspan"] = len(rowspan)
|
1024 |
-
elif "rowspan" in a:
|
1025 |
-
del a["rowspan"]
|
1026 |
-
if len(colspan) > 1:
|
1027 |
-
a["colspan"] = len(colspan)
|
1028 |
-
elif "colspan" in a:
|
1029 |
-
del a["colspan"]
|
1030 |
-
tbl[rowspan[0]][colspan[0]] = arr
|
1031 |
-
|
1032 |
-
return tbl
|
1033 |
-
|
1034 |
-
def __construct_table(self, boxes, html=False):
|
1035 |
-
cap = ""
|
1036 |
-
i = 0
|
1037 |
-
while i < len(boxes):
|
1038 |
-
if self.is_caption(boxes[i]):
|
1039 |
-
cap += boxes[i]["text"]
|
1040 |
-
boxes.pop(i)
|
1041 |
-
i -= 1
|
1042 |
-
i += 1
|
1043 |
-
|
1044 |
-
if not boxes:
|
1045 |
-
return []
|
1046 |
-
for b in boxes:
|
1047 |
-
b["btype"] = self._blockType(b)
|
1048 |
-
max_type = Counter([b["btype"] for b in boxes]).items()
|
1049 |
-
max_type = max(max_type, key=lambda x: x[1])[0] if max_type else ""
|
1050 |
-
logging.debug("MAXTYPE: " + max_type)
|
1051 |
-
|
1052 |
-
rowh = [b["R_bott"] - b["R_top"] for b in boxes if "R" in b]
|
1053 |
-
rowh = np.min(rowh) if rowh else 0
|
1054 |
-
# boxes = self.sort_Y_firstly(boxes, rowh/5)
|
1055 |
-
boxes = self.sort_R_firstly(boxes, rowh / 2)
|
1056 |
-
boxes[0]["rn"] = 0
|
1057 |
-
rows = [[boxes[0]]]
|
1058 |
-
btm = boxes[0]["bottom"]
|
1059 |
-
for b in boxes[1:]:
|
1060 |
-
b["rn"] = len(rows) - 1
|
1061 |
-
lst_r = rows[-1]
|
1062 |
-
if lst_r[-1].get("R", "") != b.get("R", "") \
|
1063 |
-
or (b["top"] >= btm - 3 and lst_r[-1].get("R", "-1") != b.get("R", "-2")
|
1064 |
-
): # new row
|
1065 |
-
btm = b["bottom"]
|
1066 |
-
b["rn"] += 1
|
1067 |
-
rows.append([b])
|
1068 |
-
continue
|
1069 |
-
btm = (btm + b["bottom"]) / 2.
|
1070 |
-
rows[-1].append(b)
|
1071 |
-
|
1072 |
-
colwm = [b["C_right"] - b["C_left"] for b in boxes if "C" in b]
|
1073 |
-
colwm = np.min(colwm) if colwm else 0
|
1074 |
-
crosspage = len(set([b["page_number"] for b in boxes])) > 1
|
1075 |
-
if crosspage:
|
1076 |
-
boxes = self.sort_X_firstly(boxes, colwm / 2, False)
|
1077 |
-
else:
|
1078 |
-
boxes = self.sort_C_firstly(boxes, colwm / 2)
|
1079 |
-
boxes[0]["cn"] = 0
|
1080 |
-
cols = [[boxes[0]]]
|
1081 |
-
right = boxes[0]["x1"]
|
1082 |
-
for b in boxes[1:]:
|
1083 |
-
b["cn"] = len(cols) - 1
|
1084 |
-
lst_c = cols[-1]
|
1085 |
-
if (int(b.get("C", "1")) - int(lst_c[-1].get("C", "1")) == 1 and b["page_number"] == lst_c[-1][
|
1086 |
-
"page_number"]) \
|
1087 |
-
or (b["x0"] >= right and lst_c[-1].get("C", "-1") != b.get("C", "-2")): # new col
|
1088 |
-
right = b["x1"]
|
1089 |
-
b["cn"] += 1
|
1090 |
-
cols.append([b])
|
1091 |
-
continue
|
1092 |
-
right = (right + b["x1"]) / 2.
|
1093 |
-
cols[-1].append(b)
|
1094 |
-
|
1095 |
-
tbl = [[[] for _ in range(len(cols))] for _ in range(len(rows))]
|
1096 |
-
for b in boxes:
|
1097 |
-
tbl[b["rn"]][b["cn"]].append(b)
|
1098 |
-
|
1099 |
-
if len(rows) >= 4:
|
1100 |
-
# remove single in column
|
1101 |
-
j = 0
|
1102 |
-
while j < len(tbl[0]):
|
1103 |
-
e, ii = 0, 0
|
1104 |
-
for i in range(len(tbl)):
|
1105 |
-
if tbl[i][j]:
|
1106 |
-
e += 1
|
1107 |
-
ii = i
|
1108 |
-
if e > 1:
|
1109 |
-
break
|
1110 |
-
if e > 1:
|
1111 |
-
j += 1
|
1112 |
-
continue
|
1113 |
-
f = (j > 0 and tbl[ii][j - 1] and tbl[ii]
|
1114 |
-
[j - 1][0].get("text")) or j == 0
|
1115 |
-
ff = (j + 1 < len(tbl[ii]) and tbl[ii][j + 1] and tbl[ii]
|
1116 |
-
[j + 1][0].get("text")) or j + 1 >= len(tbl[ii])
|
1117 |
-
if f and ff:
|
1118 |
-
j += 1
|
1119 |
-
continue
|
1120 |
-
bx = tbl[ii][j][0]
|
1121 |
-
logging.debug("Relocate column single: " + bx["text"])
|
1122 |
-
# j column only has one value
|
1123 |
-
left, right = 100000, 100000
|
1124 |
-
if j > 0 and not f:
|
1125 |
-
for i in range(len(tbl)):
|
1126 |
-
if tbl[i][j - 1]:
|
1127 |
-
left = min(left, np.min(
|
1128 |
-
[bx["x0"] - a["x1"] for a in tbl[i][j - 1]]))
|
1129 |
-
if j + 1 < len(tbl[0]) and not ff:
|
1130 |
-
for i in range(len(tbl)):
|
1131 |
-
if tbl[i][j + 1]:
|
1132 |
-
right = min(right, np.min(
|
1133 |
-
[a["x0"] - bx["x1"] for a in tbl[i][j + 1]]))
|
1134 |
-
assert left < 100000 or right < 100000
|
1135 |
-
if left < right:
|
1136 |
-
for jj in range(j, len(tbl[0])):
|
1137 |
-
for i in range(len(tbl)):
|
1138 |
-
for a in tbl[i][jj]:
|
1139 |
-
a["cn"] -= 1
|
1140 |
-
if tbl[ii][j - 1]:
|
1141 |
-
tbl[ii][j - 1].extend(tbl[ii][j])
|
1142 |
-
else:
|
1143 |
-
tbl[ii][j - 1] = tbl[ii][j]
|
1144 |
-
for i in range(len(tbl)):
|
1145 |
-
tbl[i].pop(j)
|
1146 |
-
|
1147 |
-
else:
|
1148 |
-
for jj in range(j + 1, len(tbl[0])):
|
1149 |
-
for i in range(len(tbl)):
|
1150 |
-
for a in tbl[i][jj]:
|
1151 |
-
a["cn"] -= 1
|
1152 |
-
if tbl[ii][j + 1]:
|
1153 |
-
tbl[ii][j + 1].extend(tbl[ii][j])
|
1154 |
-
else:
|
1155 |
-
tbl[ii][j + 1] = tbl[ii][j]
|
1156 |
-
for i in range(len(tbl)):
|
1157 |
-
tbl[i].pop(j)
|
1158 |
-
cols.pop(j)
|
1159 |
-
assert len(cols) == len(tbl[0]), "Column NO. miss matched: %d vs %d" % (
|
1160 |
-
len(cols), len(tbl[0]))
|
1161 |
-
|
1162 |
-
if len(cols) >= 4:
|
1163 |
-
# remove single in row
|
1164 |
-
i = 0
|
1165 |
-
while i < len(tbl):
|
1166 |
-
e, jj = 0, 0
|
1167 |
-
for j in range(len(tbl[i])):
|
1168 |
-
if tbl[i][j]:
|
1169 |
-
e += 1
|
1170 |
-
jj = j
|
1171 |
-
if e > 1:
|
1172 |
-
break
|
1173 |
-
if e > 1:
|
1174 |
-
i += 1
|
1175 |
-
continue
|
1176 |
-
f = (i > 0 and tbl[i - 1][jj] and tbl[i - 1]
|
1177 |
-
[jj][0].get("text")) or i == 0
|
1178 |
-
ff = (i + 1 < len(tbl) and tbl[i + 1][jj] and tbl[i + 1]
|
1179 |
-
[jj][0].get("text")) or i + 1 >= len(tbl)
|
1180 |
-
if f and ff:
|
1181 |
-
i += 1
|
1182 |
-
continue
|
1183 |
-
|
1184 |
-
bx = tbl[i][jj][0]
|
1185 |
-
logging.debug("Relocate row single: " + bx["text"])
|
1186 |
-
# i row only has one value
|
1187 |
-
up, down = 100000, 100000
|
1188 |
-
if i > 0 and not f:
|
1189 |
-
for j in range(len(tbl[i - 1])):
|
1190 |
-
if tbl[i - 1][j]:
|
1191 |
-
up = min(up, np.min(
|
1192 |
-
[bx["top"] - a["bottom"] for a in tbl[i - 1][j]]))
|
1193 |
-
if i + 1 < len(tbl) and not ff:
|
1194 |
-
for j in range(len(tbl[i + 1])):
|
1195 |
-
if tbl[i + 1][j]:
|
1196 |
-
down = min(down, np.min(
|
1197 |
-
[a["top"] - bx["bottom"] for a in tbl[i + 1][j]]))
|
1198 |
-
assert up < 100000 or down < 100000
|
1199 |
-
if up < down:
|
1200 |
-
for ii in range(i, len(tbl)):
|
1201 |
-
for j in range(len(tbl[ii])):
|
1202 |
-
for a in tbl[ii][j]:
|
1203 |
-
a["rn"] -= 1
|
1204 |
-
if tbl[i - 1][jj]:
|
1205 |
-
tbl[i - 1][jj].extend(tbl[i][jj])
|
1206 |
-
else:
|
1207 |
-
tbl[i - 1][jj] = tbl[i][jj]
|
1208 |
-
tbl.pop(i)
|
1209 |
-
|
1210 |
-
else:
|
1211 |
-
for ii in range(i + 1, len(tbl)):
|
1212 |
-
for j in range(len(tbl[ii])):
|
1213 |
-
for a in tbl[ii][j]:
|
1214 |
-
a["rn"] -= 1
|
1215 |
-
if tbl[i + 1][jj]:
|
1216 |
-
tbl[i + 1][jj].extend(tbl[i][jj])
|
1217 |
-
else:
|
1218 |
-
tbl[i + 1][jj] = tbl[i][jj]
|
1219 |
-
tbl.pop(i)
|
1220 |
-
rows.pop(i)
|
1221 |
-
|
1222 |
-
# which rows are headers
|
1223 |
-
hdset = set([])
|
1224 |
-
for i in range(len(tbl)):
|
1225 |
-
cnt, h = 0, 0
|
1226 |
-
for j, arr in enumerate(tbl[i]):
|
1227 |
-
if not arr:
|
1228 |
-
continue
|
1229 |
-
cnt += 1
|
1230 |
-
if max_type == "Nu" and arr[0]["btype"] == "Nu":
|
1231 |
-
continue
|
1232 |
-
if any([a.get("H") for a in arr]) \
|
1233 |
-
or (max_type == "Nu" and arr[0]["btype"] != "Nu"):
|
1234 |
-
h += 1
|
1235 |
-
if h / cnt > 0.5:
|
1236 |
-
hdset.add(i)
|
1237 |
-
|
1238 |
-
if html:
|
1239 |
-
return [self.__html_table(cap, hdset,
|
1240 |
-
self.__cal_spans(boxes, rows,
|
1241 |
-
cols, tbl, True)
|
1242 |
-
)]
|
1243 |
-
|
1244 |
-
return self.__desc_table(cap, hdset,
|
1245 |
-
self.__cal_spans(boxes, rows, cols, tbl, False))
|
1246 |
-
|
1247 |
-
def __html_table(self, cap, hdset, tbl):
|
1248 |
-
# constrcut HTML
|
1249 |
-
html = "<table>"
|
1250 |
-
if cap:
|
1251 |
-
html += f"<caption>{cap}</caption>"
|
1252 |
-
for i in range(len(tbl)):
|
1253 |
-
row = "<tr>"
|
1254 |
-
txts = []
|
1255 |
-
for j, arr in enumerate(tbl[i]):
|
1256 |
-
if arr is None:
|
1257 |
-
continue
|
1258 |
-
if not arr:
|
1259 |
-
row += "<td></td>" if i not in hdset else "<th></th>"
|
1260 |
-
continue
|
1261 |
-
txt = ""
|
1262 |
-
if arr:
|
1263 |
-
h = min(np.min([c["bottom"] - c["top"] for c in arr]) / 2,
|
1264 |
-
self.mean_height[arr[0]["page_number"] - 1] / 2)
|
1265 |
-
txt = "".join([c["text"]
|
1266 |
-
for c in self.sort_Y_firstly(arr, h)])
|
1267 |
-
txts.append(txt)
|
1268 |
-
sp = ""
|
1269 |
-
if arr[0].get("colspan"):
|
1270 |
-
sp = "colspan={}".format(arr[0]["colspan"])
|
1271 |
-
if arr[0].get("rowspan"):
|
1272 |
-
sp += " rowspan={}".format(arr[0]["rowspan"])
|
1273 |
-
if i in hdset:
|
1274 |
-
row += f"<th {sp} >" + txt + "</th>"
|
1275 |
-
else:
|
1276 |
-
row += f"<td {sp} >" + txt + "</td>"
|
1277 |
-
|
1278 |
-
if i in hdset:
|
1279 |
-
if all([t in hdset for t in txts]):
|
1280 |
-
continue
|
1281 |
-
for t in txts:
|
1282 |
-
hdset.add(t)
|
1283 |
-
|
1284 |
-
if row != "<tr>":
|
1285 |
-
row += "</tr>"
|
1286 |
-
else:
|
1287 |
-
row = ""
|
1288 |
-
html += "\n" + row
|
1289 |
-
html += "\n</table>"
|
1290 |
-
return html
|
1291 |
-
|
1292 |
-
def __desc_table(self, cap, hdr_rowno, tbl):
|
1293 |
-
# get text of every colomn in header row to become header text
|
1294 |
-
clmno = len(tbl[0])
|
1295 |
-
rowno = len(tbl)
|
1296 |
-
headers = {}
|
1297 |
-
hdrset = set()
|
1298 |
-
lst_hdr = []
|
1299 |
-
de = "的" if not self.is_english else " for "
|
1300 |
-
for r in sorted(list(hdr_rowno)):
|
1301 |
-
headers[r] = ["" for _ in range(clmno)]
|
1302 |
-
for i in range(clmno):
|
1303 |
-
if not tbl[r][i]:
|
1304 |
-
continue
|
1305 |
-
txt = "".join([a["text"].strip() for a in tbl[r][i]])
|
1306 |
-
headers[r][i] = txt
|
1307 |
-
hdrset.add(txt)
|
1308 |
-
if all([not t for t in headers[r]]):
|
1309 |
-
del headers[r]
|
1310 |
-
hdr_rowno.remove(r)
|
1311 |
-
continue
|
1312 |
-
for j in range(clmno):
|
1313 |
-
if headers[r][j]:
|
1314 |
-
continue
|
1315 |
-
if j >= len(lst_hdr):
|
1316 |
-
break
|
1317 |
-
headers[r][j] = lst_hdr[j]
|
1318 |
-
lst_hdr = headers[r]
|
1319 |
-
for i in range(rowno):
|
1320 |
-
if i not in hdr_rowno:
|
1321 |
-
continue
|
1322 |
-
for j in range(i + 1, rowno):
|
1323 |
-
if j not in hdr_rowno:
|
1324 |
-
break
|
1325 |
-
for k in range(clmno):
|
1326 |
-
if not headers[j - 1][k]:
|
1327 |
-
continue
|
1328 |
-
if headers[j][k].find(headers[j - 1][k]) >= 0:
|
1329 |
-
continue
|
1330 |
-
if len(headers[j][k]) > len(headers[j - 1][k]):
|
1331 |
-
headers[j][k] += (de if headers[j][k]
|
1332 |
-
else "") + headers[j - 1][k]
|
1333 |
-
else:
|
1334 |
-
headers[j][k] = headers[j - 1][k] \
|
1335 |
-
+ (de if headers[j - 1][k] else "") \
|
1336 |
-
+ headers[j][k]
|
1337 |
-
|
1338 |
-
logging.debug(
|
1339 |
-
f">>>>>>>>>>>>>>>>>{cap}:SIZE:{rowno}X{clmno} Header: {hdr_rowno}")
|
1340 |
-
row_txt = []
|
1341 |
-
for i in range(rowno):
|
1342 |
-
if i in hdr_rowno:
|
1343 |
-
continue
|
1344 |
-
rtxt = []
|
1345 |
-
|
1346 |
-
def append(delimer):
|
1347 |
-
nonlocal rtxt, row_txt
|
1348 |
-
rtxt = delimer.join(rtxt)
|
1349 |
-
if row_txt and len(row_txt[-1]) + len(rtxt) < 64:
|
1350 |
-
row_txt[-1] += "\n" + rtxt
|
1351 |
-
else:
|
1352 |
-
row_txt.append(rtxt)
|
1353 |
-
|
1354 |
-
r = 0
|
1355 |
-
if len(headers.items()):
|
1356 |
-
_arr = [(i - r, r) for r, _ in headers.items() if r < i]
|
1357 |
-
if _arr:
|
1358 |
-
_, r = min(_arr, key=lambda x: x[0])
|
1359 |
-
|
1360 |
-
if r not in headers and clmno <= 2:
|
1361 |
-
for j in range(clmno):
|
1362 |
-
if not tbl[i][j]:
|
1363 |
-
continue
|
1364 |
-
txt = "".join([a["text"].strip() for a in tbl[i][j]])
|
1365 |
-
if txt:
|
1366 |
-
rtxt.append(txt)
|
1367 |
-
if rtxt:
|
1368 |
-
append(":")
|
1369 |
-
continue
|
1370 |
-
|
1371 |
-
for j in range(clmno):
|
1372 |
-
if not tbl[i][j]:
|
1373 |
-
continue
|
1374 |
-
txt = "".join([a["text"].strip() for a in tbl[i][j]])
|
1375 |
-
if not txt:
|
1376 |
-
continue
|
1377 |
-
ctt = headers[r][j] if r in headers else ""
|
1378 |
-
if ctt:
|
1379 |
-
ctt += ":"
|
1380 |
-
ctt += txt
|
1381 |
-
if ctt:
|
1382 |
-
rtxt.append(ctt)
|
1383 |
-
|
1384 |
-
if rtxt:
|
1385 |
-
row_txt.append("; ".join(rtxt))
|
1386 |
-
|
1387 |
-
if cap:
|
1388 |
-
if self.is_english:
|
1389 |
-
from_ = " in "
|
1390 |
-
else:
|
1391 |
-
from_ = "来自"
|
1392 |
-
row_txt = [t + f"\t——{from_}“{cap}”" for t in row_txt]
|
1393 |
-
return row_txt
|
1394 |
-
|
1395 |
-
@staticmethod
|
1396 |
-
def is_caption(bx):
|
1397 |
-
patt = [
|
1398 |
-
r"[图表]+[ 0-9::]{2,}"
|
1399 |
-
]
|
1400 |
-
if any([re.match(p, bx["text"].strip()) for p in patt]) \
|
1401 |
-
or bx["layout_type"].find("caption") >= 0:
|
1402 |
-
return True
|
1403 |
-
return False
|
1404 |
-
|
1405 |
def _extract_table_figure(self, need_image, ZM, return_html):
|
1406 |
tables = {}
|
1407 |
figures = {}
|
@@ -1415,7 +557,7 @@ class HuParser:
|
|
1415 |
continue
|
1416 |
lout_no = str(self.boxes[i]["page_number"]) + \
|
1417 |
"-" + str(self.boxes[i]["layoutno"])
|
1418 |
-
if
|
1419 |
"figure caption", "reference"]:
|
1420 |
nomerge_lout_no.append(lst_lout_no)
|
1421 |
if self.boxes[i]["layout_type"] == "table":
|
@@ -1470,7 +612,7 @@ class HuParser:
|
|
1470 |
while i < len(self.boxes):
|
1471 |
c = self.boxes[i]
|
1472 |
# mh = self.mean_height[c["page_number"]-1]
|
1473 |
-
if not
|
1474 |
i += 1
|
1475 |
continue
|
1476 |
|
@@ -1529,7 +671,7 @@ class HuParser:
|
|
1529 |
"bottom": np.max([b["bottom"] for b in bxs]) - ht
|
1530 |
}
|
1531 |
louts = [l for l in self.page_layout[pn] if l["type"] == ltype]
|
1532 |
-
ii =
|
1533 |
if ii is not None:
|
1534 |
b = louts[ii]
|
1535 |
else:
|
@@ -1581,7 +723,7 @@ class HuParser:
|
|
1581 |
if not bxs:
|
1582 |
continue
|
1583 |
res.append((cropout(bxs, "table"),
|
1584 |
-
self.
|
1585 |
|
1586 |
return res
|
1587 |
|
|
|
1 |
# -*- coding: utf-8 -*-
|
|
|
2 |
import random
|
3 |
|
4 |
import fitz
|
|
|
5 |
import xgboost as xgb
|
6 |
from io import BytesIO
|
7 |
import torch
|
|
|
12 |
import numpy as np
|
13 |
|
14 |
from api.db import ParserType
|
15 |
+
from deepdoc.vision import OCR, Recognizer, LayoutRecognizer, TableStructureRecognizer
|
16 |
from rag.nlp import huqie
|
|
|
17 |
from copy import deepcopy
|
18 |
from huggingface_hub import hf_hub_download
|
19 |
|
|
|
26 |
self.ocr = OCR()
|
27 |
if not hasattr(self, "model_speciess"):
|
28 |
self.model_speciess = ParserType.GENERAL.value
|
29 |
+
self.layouter = LayoutRecognizer("layout."+self.model_speciess)
|
30 |
+
self.tbl_det = TableStructureRecognizer()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
self.updown_cnt_mdl = xgb.Booster()
|
33 |
if torch.cuda.is_available():
|
|
|
46 |
|
47 |
"""
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
def __char_width(self, c):
|
50 |
return (c["x1"] - c["x0"]) // len(c["text"])
|
51 |
|
|
|
131 |
]
|
132 |
return fea
|
133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
@staticmethod
|
135 |
def sort_X_by_page(arr, threashold):
|
136 |
# sort using y1 first and then x1
|
|
|
146 |
arr[j + 1] = tmp
|
147 |
return arr
|
148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
def _has_color(self, o):
|
150 |
if o.get("ncs", "") == "DeviceGray":
|
151 |
if o["stroking_color"] and o["stroking_color"][0] == 1 and o["non_stroking_color"] and \
|
|
|
154 |
return False
|
155 |
return True
|
156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
def _table_transformer_job(self, ZM):
|
158 |
logging.info("Table processing...")
|
159 |
imgs, pos = [], []
|
|
|
179 |
assert len(self.page_images) == len(tbcnt) - 1
|
180 |
if not imgs:
|
181 |
return
|
182 |
+
recos = self.tbl_det(imgs)
|
183 |
tbcnt = np.cumsum(tbcnt)
|
184 |
for i in range(len(tbcnt) - 1): # for page
|
185 |
pg = []
|
|
|
201 |
self.tb_cpns.extend(pg)
|
202 |
|
203 |
def gather(kwd, fzy=10, ption=0.6):
|
204 |
+
eles = Recognizer.sort_Y_firstly(
|
205 |
[r for r in self.tb_cpns if re.match(kwd, r["label"])], fzy)
|
206 |
+
eles = Recognizer.layouts_cleanup(self.boxes, eles, 5, ption)
|
207 |
+
return Recognizer.sort_Y_firstly(eles, 0)
|
208 |
|
209 |
# add R,H,C,SP tag to boxes within table layout
|
210 |
headers = gather(r".*header$")
|
|
|
212 |
spans = gather(r".*spanning")
|
213 |
clmns = sorted([r for r in self.tb_cpns if re.match(
|
214 |
r"table column$", r["label"])], key=lambda x: (x["pn"], x["layoutno"], x["x0"]))
|
215 |
+
clmns = Recognizer.layouts_cleanup(self.boxes, clmns, 5, 0.5)
|
216 |
for b in self.boxes:
|
217 |
if b.get("layout_type", "") != "table":
|
218 |
continue
|
219 |
+
ii = Recognizer.find_overlapped_with_threashold(b, rows, thr=0.3)
|
220 |
if ii is not None:
|
221 |
b["R"] = ii
|
222 |
b["R_top"] = rows[ii]["top"]
|
223 |
b["R_bott"] = rows[ii]["bottom"]
|
224 |
|
225 |
+
ii = Recognizer.find_overlapped_with_threashold(b, headers, thr=0.3)
|
226 |
if ii is not None:
|
227 |
b["H_top"] = headers[ii]["top"]
|
228 |
b["H_bott"] = headers[ii]["bottom"]
|
|
|
230 |
b["H_right"] = headers[ii]["x1"]
|
231 |
b["H"] = ii
|
232 |
|
233 |
+
ii = Recognizer.find_overlapped_with_threashold(b, clmns, thr=0.3)
|
234 |
if ii is not None:
|
235 |
b["C"] = ii
|
236 |
b["C_left"] = clmns[ii]["x0"]
|
237 |
b["C_right"] = clmns[ii]["x1"]
|
238 |
|
239 |
+
ii = Recognizer.find_overlapped_with_threashold(b, spans, thr=0.3)
|
240 |
if ii is not None:
|
241 |
b["H_top"] = spans[ii]["top"]
|
242 |
b["H_bott"] = spans[ii]["bottom"]
|
|
|
250 |
self.boxes.append([])
|
251 |
return
|
252 |
bxs = [(line[0], line[1][0]) for line in bxs]
|
253 |
+
bxs = Recognizer.sort_Y_firstly(
|
254 |
[{"x0": b[0][0] / ZM, "x1": b[1][0] / ZM,
|
255 |
"top": b[0][1] / ZM, "text": "", "txt": t,
|
256 |
"bottom": b[-1][1] / ZM,
|
|
|
259 |
)
|
260 |
|
261 |
# merge chars in the same rect
|
262 |
+
for c in Recognizer.sort_X_firstly(chars, self.mean_width[pagenum - 1] // 4):
|
263 |
+
ii = Recognizer.find_overlapped(c, bxs)
|
264 |
if ii is None:
|
265 |
self.lefted_chars.append(c)
|
266 |
continue
|
|
|
281 |
if self.mean_height[-1] == 0:
|
282 |
self.mean_height[-1] = np.median([b["bottom"] - b["top"]
|
283 |
for b in bxs])
|
|
|
284 |
self.boxes.append(bxs)
|
285 |
|
286 |
def _layouts_rec(self, ZM):
|
287 |
assert len(self.page_images) == len(self.boxes)
|
288 |
+
self.boxes, self.page_layout = self.layouter(self.page_images, self.boxes, ZM)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
289 |
# cumlative Y
|
290 |
for i in range(len(self.boxes)):
|
291 |
self.boxes[i]["top"] += \
|
|
|
338 |
self.boxes = bxs
|
339 |
|
340 |
def _naive_vertical_merge(self):
|
341 |
+
bxs = Recognizer.sort_Y_firstly(self.boxes, np.median(self.mean_height) / 3)
|
342 |
i = 0
|
343 |
while i + 1 < len(bxs):
|
344 |
b = bxs[i]
|
|
|
478 |
t["layout_type"] = c["layout_type"]
|
479 |
boxes.append(t)
|
480 |
|
481 |
+
self.boxes = Recognizer.sort_Y_firstly(boxes, 0)
|
482 |
|
483 |
def _filter_forpages(self):
|
484 |
if not self.boxes:
|
|
|
544 |
b_["top"] = b["top"]
|
545 |
self.boxes.pop(i)
|
546 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
547 |
def _extract_table_figure(self, need_image, ZM, return_html):
|
548 |
tables = {}
|
549 |
figures = {}
|
|
|
557 |
continue
|
558 |
lout_no = str(self.boxes[i]["page_number"]) + \
|
559 |
"-" + str(self.boxes[i]["layoutno"])
|
560 |
+
if TableStructureRecognizer.is_caption(self.boxes[i]) or self.boxes[i]["layout_type"] in ["table caption", "title",
|
561 |
"figure caption", "reference"]:
|
562 |
nomerge_lout_no.append(lst_lout_no)
|
563 |
if self.boxes[i]["layout_type"] == "table":
|
|
|
612 |
while i < len(self.boxes):
|
613 |
c = self.boxes[i]
|
614 |
# mh = self.mean_height[c["page_number"]-1]
|
615 |
+
if not TableStructureRecognizer.is_caption(c):
|
616 |
i += 1
|
617 |
continue
|
618 |
|
|
|
671 |
"bottom": np.max([b["bottom"] for b in bxs]) - ht
|
672 |
}
|
673 |
louts = [l for l in self.page_layout[pn] if l["type"] == ltype]
|
674 |
+
ii = Recognizer.find_overlapped(b, louts, naive=True)
|
675 |
if ii is not None:
|
676 |
b = louts[ii]
|
677 |
else:
|
|
|
723 |
if not bxs:
|
724 |
continue
|
725 |
res.append((cropout(bxs, "table"),
|
726 |
+
self.tbl_det.construct_table(bxs, html=return_html, is_english=self.is_english)))
|
727 |
|
728 |
return res
|
729 |
|
deepdoc/vision/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .ocr import OCR
|
2 |
+
from .recognizer import Recognizer
|
3 |
+
from .layout_recognizer import LayoutRecognizer
|
4 |
+
from .table_structure_recognizer import TableStructureRecognizer
|
deepdoc/vision/layout_recognizer.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
from collections import Counter
|
4 |
+
from copy import deepcopy
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
from api.utils.file_utils import get_project_base_directory
|
9 |
+
from .recognizer import Recognizer
|
10 |
+
|
11 |
+
|
12 |
+
class LayoutRecognizer(Recognizer):
|
13 |
+
def __init__(self, domain):
|
14 |
+
self.layout_labels = [
|
15 |
+
"_background_",
|
16 |
+
"Text",
|
17 |
+
"Title",
|
18 |
+
"Figure",
|
19 |
+
"Figure caption",
|
20 |
+
"Table",
|
21 |
+
"Table caption",
|
22 |
+
"Header",
|
23 |
+
"Footer",
|
24 |
+
"Reference",
|
25 |
+
"Equation",
|
26 |
+
]
|
27 |
+
super().__init__(self.layout_labels, domain,
|
28 |
+
os.path.join(get_project_base_directory(), "rag/res/deepdoc/"))
|
29 |
+
|
30 |
+
def __call__(self, image_list, ocr_res, scale_factor=3, thr=0.7, batch_size=16):
|
31 |
+
def __is_garbage(b):
|
32 |
+
patt = [r"^•+$", r"(版权归©|免责条款|地址[::])", r"\.{3,}", "^[0-9]{1,2} / ?[0-9]{1,2}$",
|
33 |
+
r"^[0-9]{1,2} of [0-9]{1,2}$", "^http://[^ ]{12,}",
|
34 |
+
"(资料|数据)来源[::]", "[0-9a-z._-]+@[a-z0-9-]+\\.[a-z]{2,3}",
|
35 |
+
"\\(cid *: *[0-9]+ *\\)"
|
36 |
+
]
|
37 |
+
return any([re.search(p, b["text"]) for p in patt])
|
38 |
+
|
39 |
+
layouts = super().__call__(image_list, thr, batch_size)
|
40 |
+
# save_results(image_list, layouts, self.layout_labels, output_dir='output/', threshold=0.7)
|
41 |
+
assert len(image_list) == len(ocr_res)
|
42 |
+
# Tag layout type
|
43 |
+
boxes = []
|
44 |
+
assert len(image_list) == len(layouts)
|
45 |
+
garbages = {}
|
46 |
+
page_layout = []
|
47 |
+
for pn, lts in enumerate(layouts):
|
48 |
+
bxs = ocr_res[pn]
|
49 |
+
lts = [{"type": b["type"],
|
50 |
+
"score": float(b["score"]),
|
51 |
+
"x0": b["bbox"][0] / scale_factor, "x1": b["bbox"][2] / scale_factor,
|
52 |
+
"top": b["bbox"][1] / scale_factor, "bottom": b["bbox"][-1] / scale_factor,
|
53 |
+
"page_number": pn,
|
54 |
+
} for b in lts]
|
55 |
+
lts = self.sort_Y_firstly(lts, np.mean([l["bottom"]-l["top"] for l in lts]) / 2)
|
56 |
+
lts = self.layouts_cleanup(bxs, lts)
|
57 |
+
page_layout.append(lts)
|
58 |
+
|
59 |
+
# Tag layout type, layouts are ready
|
60 |
+
def findLayout(ty):
|
61 |
+
nonlocal bxs, lts, self
|
62 |
+
lts_ = [lt for lt in lts if lt["type"] == ty]
|
63 |
+
i = 0
|
64 |
+
while i < len(bxs):
|
65 |
+
if bxs[i].get("layout_type"):
|
66 |
+
i += 1
|
67 |
+
continue
|
68 |
+
if __is_garbage(bxs[i]):
|
69 |
+
bxs.pop(i)
|
70 |
+
continue
|
71 |
+
|
72 |
+
ii = self.find_overlapped_with_threashold(bxs[i], lts_,
|
73 |
+
thr=0.4)
|
74 |
+
if ii is None: # belong to nothing
|
75 |
+
bxs[i]["layout_type"] = ""
|
76 |
+
i += 1
|
77 |
+
continue
|
78 |
+
lts_[ii]["visited"] = True
|
79 |
+
if lts_[ii]["type"] in ["footer", "header", "reference"]:
|
80 |
+
if lts_[ii]["type"] not in garbages:
|
81 |
+
garbages[lts_[ii]["type"]] = []
|
82 |
+
garbages[lts_[ii]["type"]].append(bxs[i]["text"])
|
83 |
+
bxs.pop(i)
|
84 |
+
continue
|
85 |
+
|
86 |
+
bxs[i]["layoutno"] = f"{ty}-{ii}"
|
87 |
+
bxs[i]["layout_type"] = lts_[ii]["type"]
|
88 |
+
i += 1
|
89 |
+
|
90 |
+
for lt in ["footer", "header", "reference", "figure caption",
|
91 |
+
"table caption", "title", "text", "table", "figure", "equation"]:
|
92 |
+
findLayout(lt)
|
93 |
+
|
94 |
+
# add box to figure layouts which has not text box
|
95 |
+
for i, lt in enumerate(
|
96 |
+
[lt for lt in lts if lt["type"] == "figure"]):
|
97 |
+
if lt.get("visited"):
|
98 |
+
continue
|
99 |
+
lt = deepcopy(lt)
|
100 |
+
del lt["type"]
|
101 |
+
lt["text"] = ""
|
102 |
+
lt["layout_type"] = "figure"
|
103 |
+
lt["layoutno"] = f"figure-{i}"
|
104 |
+
bxs.append(lt)
|
105 |
+
|
106 |
+
boxes.extend(bxs)
|
107 |
+
|
108 |
+
ocr_res = boxes
|
109 |
+
|
110 |
+
garbag_set = set()
|
111 |
+
for k in garbages.keys():
|
112 |
+
garbages[k] = Counter(garbages[k])
|
113 |
+
for g, c in garbages[k].items():
|
114 |
+
if c > 1:
|
115 |
+
garbag_set.add(g)
|
116 |
+
|
117 |
+
ocr_res = [b for b in ocr_res if b["text"].strip() not in garbag_set]
|
118 |
+
return ocr_res, page_layout
|
119 |
+
|
deepdoc/{visual → vision}/ocr.py
RENAMED
@@ -74,7 +74,7 @@ class TextRecognizer(object):
|
|
74 |
self.rec_batch_num = 16
|
75 |
postprocess_params = {
|
76 |
'name': 'CTCLabelDecode',
|
77 |
-
"character_dict_path": os.path.join(
|
78 |
"use_space_char": True
|
79 |
}
|
80 |
self.postprocess_op = build_post_process(postprocess_params)
|
@@ -450,7 +450,7 @@ class OCR(object):
|
|
450 |
|
451 |
"""
|
452 |
if not model_dir:
|
453 |
-
model_dir = snapshot_download(repo_id="InfiniFlow/
|
454 |
|
455 |
self.text_detector = TextDetector(model_dir)
|
456 |
self.text_recognizer = TextRecognizer(model_dir)
|
|
|
74 |
self.rec_batch_num = 16
|
75 |
postprocess_params = {
|
76 |
'name': 'CTCLabelDecode',
|
77 |
+
"character_dict_path": os.path.join(os.path.dirname(os.path.realpath(__file__)), "ocr.res"),
|
78 |
"use_space_char": True
|
79 |
}
|
80 |
self.postprocess_op = build_post_process(postprocess_params)
|
|
|
450 |
|
451 |
"""
|
452 |
if not model_dir:
|
453 |
+
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc")
|
454 |
|
455 |
self.text_detector = TextDetector(model_dir)
|
456 |
self.text_recognizer = TextRecognizer(model_dir)
|
deepdoc/{visual → vision}/ocr.res
RENAMED
File without changes
|
deepdoc/{visual → vision}/operators.py
RENAMED
File without changes
|
deepdoc/{visual → vision}/postprocess.py
RENAMED
File without changes
|
deepdoc/{visual → vision}/recognizer.py
RENAMED
@@ -12,9 +12,12 @@
|
|
12 |
#
|
13 |
|
14 |
import os
|
|
|
|
|
15 |
import onnxruntime as ort
|
16 |
from huggingface_hub import snapshot_download
|
17 |
|
|
|
18 |
from .operators import *
|
19 |
from rag.settings import cron_logger
|
20 |
|
@@ -45,6 +48,140 @@ class Recognizer(object):
|
|
45 |
self.ort_sess = ort.InferenceSession(model_file_path, providers=['CPUExecutionProvider'])
|
46 |
self.label_list = label_list
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
def create_inputs(self, imgs, im_info):
|
49 |
"""generate input for different model type
|
50 |
Args:
|
@@ -85,6 +222,58 @@ class Recognizer(object):
|
|
85 |
inputs['image'] = np.stack(padding_imgs, axis=0)
|
86 |
return inputs
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
def preprocess(self, image_list):
|
89 |
preprocess_ops = []
|
90 |
for op_info in [
|
@@ -103,7 +292,6 @@ class Recognizer(object):
|
|
103 |
inputs.append({"image": np.array((im,)).astype('float32'), "scale_factor": np.array((im_info["scale_factor"],)).astype('float32')})
|
104 |
return inputs
|
105 |
|
106 |
-
|
107 |
def __call__(self, image_list, thr=0.7, batch_size=16):
|
108 |
res = []
|
109 |
imgs = []
|
|
|
12 |
#
|
13 |
|
14 |
import os
|
15 |
+
from copy import deepcopy
|
16 |
+
|
17 |
import onnxruntime as ort
|
18 |
from huggingface_hub import snapshot_download
|
19 |
|
20 |
+
from . import seeit
|
21 |
from .operators import *
|
22 |
from rag.settings import cron_logger
|
23 |
|
|
|
48 |
self.ort_sess = ort.InferenceSession(model_file_path, providers=['CPUExecutionProvider'])
|
49 |
self.label_list = label_list
|
50 |
|
51 |
+
@staticmethod
|
52 |
+
def sort_Y_firstly(arr, threashold):
|
53 |
+
# sort using y1 first and then x1
|
54 |
+
arr = sorted(arr, key=lambda r: (r["top"], r["x0"]))
|
55 |
+
for i in range(len(arr) - 1):
|
56 |
+
for j in range(i, -1, -1):
|
57 |
+
# restore the order using th
|
58 |
+
if abs(arr[j + 1]["top"] - arr[j]["top"]) < threashold \
|
59 |
+
and arr[j + 1]["x0"] < arr[j]["x0"]:
|
60 |
+
tmp = deepcopy(arr[j])
|
61 |
+
arr[j] = deepcopy(arr[j + 1])
|
62 |
+
arr[j + 1] = deepcopy(tmp)
|
63 |
+
return arr
|
64 |
+
|
65 |
+
@staticmethod
|
66 |
+
def sort_X_firstly(arr, threashold, copy=True):
|
67 |
+
# sort using y1 first and then x1
|
68 |
+
arr = sorted(arr, key=lambda r: (r["x0"], r["top"]))
|
69 |
+
for i in range(len(arr) - 1):
|
70 |
+
for j in range(i, -1, -1):
|
71 |
+
# restore the order using th
|
72 |
+
if abs(arr[j + 1]["x0"] - arr[j]["x0"]) < threashold \
|
73 |
+
and arr[j + 1]["top"] < arr[j]["top"]:
|
74 |
+
tmp = deepcopy(arr[j]) if copy else arr[j]
|
75 |
+
arr[j] = deepcopy(arr[j + 1]) if copy else arr[j + 1]
|
76 |
+
arr[j + 1] = deepcopy(tmp) if copy else tmp
|
77 |
+
return arr
|
78 |
+
|
79 |
+
@staticmethod
|
80 |
+
def sort_C_firstly(arr, thr=0):
|
81 |
+
# sort using y1 first and then x1
|
82 |
+
# sorted(arr, key=lambda r: (r["x0"], r["top"]))
|
83 |
+
arr = Recognizer.sort_X_firstly(arr, thr)
|
84 |
+
for i in range(len(arr) - 1):
|
85 |
+
for j in range(i, -1, -1):
|
86 |
+
# restore the order using th
|
87 |
+
if "C" not in arr[j] or "C" not in arr[j + 1]:
|
88 |
+
continue
|
89 |
+
if arr[j + 1]["C"] < arr[j]["C"] \
|
90 |
+
or (
|
91 |
+
arr[j + 1]["C"] == arr[j]["C"]
|
92 |
+
and arr[j + 1]["top"] < arr[j]["top"]
|
93 |
+
):
|
94 |
+
tmp = arr[j]
|
95 |
+
arr[j] = arr[j + 1]
|
96 |
+
arr[j + 1] = tmp
|
97 |
+
return arr
|
98 |
+
|
99 |
+
return sorted(arr, key=lambda r: (r.get("C", r["x0"]), r["top"]))
|
100 |
+
|
101 |
+
@staticmethod
|
102 |
+
def sort_R_firstly(arr, thr=0):
|
103 |
+
# sort using y1 first and then x1
|
104 |
+
# sorted(arr, key=lambda r: (r["top"], r["x0"]))
|
105 |
+
arr = Recognizer.sort_Y_firstly(arr, thr)
|
106 |
+
for i in range(len(arr) - 1):
|
107 |
+
for j in range(i, -1, -1):
|
108 |
+
if "R" not in arr[j] or "R" not in arr[j + 1]:
|
109 |
+
continue
|
110 |
+
if arr[j + 1]["R"] < arr[j]["R"] \
|
111 |
+
or (
|
112 |
+
arr[j + 1]["R"] == arr[j]["R"]
|
113 |
+
and arr[j + 1]["x0"] < arr[j]["x0"]
|
114 |
+
):
|
115 |
+
tmp = arr[j]
|
116 |
+
arr[j] = arr[j + 1]
|
117 |
+
arr[j + 1] = tmp
|
118 |
+
return arr
|
119 |
+
|
120 |
+
@staticmethod
|
121 |
+
def overlapped_area(a, b, ratio=True):
|
122 |
+
tp, btm, x0, x1 = a["top"], a["bottom"], a["x0"], a["x1"]
|
123 |
+
if b["x0"] > x1 or b["x1"] < x0:
|
124 |
+
return 0
|
125 |
+
if b["bottom"] < tp or b["top"] > btm:
|
126 |
+
return 0
|
127 |
+
x0_ = max(b["x0"], x0)
|
128 |
+
x1_ = min(b["x1"], x1)
|
129 |
+
assert x0_ <= x1_, "Fuckedup! T:{},B:{},X0:{},X1:{} ==> {}".format(
|
130 |
+
tp, btm, x0, x1, b)
|
131 |
+
tp_ = max(b["top"], tp)
|
132 |
+
btm_ = min(b["bottom"], btm)
|
133 |
+
assert tp_ <= btm_, "Fuckedup! T:{},B:{},X0:{},X1:{} => {}".format(
|
134 |
+
tp, btm, x0, x1, b)
|
135 |
+
ov = (btm_ - tp_) * (x1_ - x0_) if x1 - \
|
136 |
+
x0 != 0 and btm - tp != 0 else 0
|
137 |
+
if ov > 0 and ratio:
|
138 |
+
ov /= (x1 - x0) * (btm - tp)
|
139 |
+
return ov
|
140 |
+
|
141 |
+
@staticmethod
|
142 |
+
def layouts_cleanup(boxes, layouts, far=2, thr=0.7):
|
143 |
+
def notOverlapped(a, b):
|
144 |
+
return any([a["x1"] < b["x0"],
|
145 |
+
a["x0"] > b["x1"],
|
146 |
+
a["bottom"] < b["top"],
|
147 |
+
a["top"] > b["bottom"]])
|
148 |
+
|
149 |
+
i = 0
|
150 |
+
while i + 1 < len(layouts):
|
151 |
+
j = i + 1
|
152 |
+
while j < min(i + far, len(layouts)) \
|
153 |
+
and (layouts[i].get("type", "") != layouts[j].get("type", "")
|
154 |
+
or notOverlapped(layouts[i], layouts[j])):
|
155 |
+
j += 1
|
156 |
+
if j >= min(i + far, len(layouts)):
|
157 |
+
i += 1
|
158 |
+
continue
|
159 |
+
if Recognizer.overlapped_area(layouts[i], layouts[j]) < thr \
|
160 |
+
and Recognizer.overlapped_area(layouts[j], layouts[i]) < thr:
|
161 |
+
i += 1
|
162 |
+
continue
|
163 |
+
|
164 |
+
if layouts[i].get("score") and layouts[j].get("score"):
|
165 |
+
if layouts[i]["score"] > layouts[j]["score"]:
|
166 |
+
layouts.pop(j)
|
167 |
+
else:
|
168 |
+
layouts.pop(i)
|
169 |
+
continue
|
170 |
+
|
171 |
+
area_i, area_i_1 = 0, 0
|
172 |
+
for b in boxes:
|
173 |
+
if not notOverlapped(b, layouts[i]):
|
174 |
+
area_i += Recognizer.overlapped_area(b, layouts[i], False)
|
175 |
+
if not notOverlapped(b, layouts[j]):
|
176 |
+
area_i_1 += Recognizer.overlapped_area(b, layouts[j], False)
|
177 |
+
|
178 |
+
if area_i > area_i_1:
|
179 |
+
layouts.pop(j)
|
180 |
+
else:
|
181 |
+
layouts.pop(i)
|
182 |
+
|
183 |
+
return layouts
|
184 |
+
|
185 |
def create_inputs(self, imgs, im_info):
|
186 |
"""generate input for different model type
|
187 |
Args:
|
|
|
222 |
inputs['image'] = np.stack(padding_imgs, axis=0)
|
223 |
return inputs
|
224 |
|
225 |
+
@staticmethod
|
226 |
+
def find_overlapped(box, boxes_sorted_by_y, naive=False):
|
227 |
+
if not boxes_sorted_by_y:
|
228 |
+
return
|
229 |
+
bxs = boxes_sorted_by_y
|
230 |
+
s, e, ii = 0, len(bxs), 0
|
231 |
+
while s < e and not naive:
|
232 |
+
ii = (e + s) // 2
|
233 |
+
pv = bxs[ii]
|
234 |
+
if box["bottom"] < pv["top"]:
|
235 |
+
e = ii
|
236 |
+
continue
|
237 |
+
if box["top"] > pv["bottom"]:
|
238 |
+
s = ii + 1
|
239 |
+
continue
|
240 |
+
break
|
241 |
+
while s < ii:
|
242 |
+
if box["top"] > bxs[s]["bottom"]:
|
243 |
+
s += 1
|
244 |
+
break
|
245 |
+
while e - 1 > ii:
|
246 |
+
if box["bottom"] < bxs[e - 1]["top"]:
|
247 |
+
e -= 1
|
248 |
+
break
|
249 |
+
|
250 |
+
max_overlaped_i, max_overlaped = None, 0
|
251 |
+
for i in range(s, e):
|
252 |
+
ov = Recognizer.overlapped_area(bxs[i], box)
|
253 |
+
if ov <= max_overlaped:
|
254 |
+
continue
|
255 |
+
max_overlaped_i = i
|
256 |
+
max_overlaped = ov
|
257 |
+
|
258 |
+
return max_overlaped_i
|
259 |
+
|
260 |
+
@staticmethod
|
261 |
+
def find_overlapped_with_threashold(box, boxes, thr=0.3):
|
262 |
+
if not boxes:
|
263 |
+
return
|
264 |
+
max_overlaped_i, max_overlaped, _max_overlaped = None, thr, 0
|
265 |
+
s, e = 0, len(boxes)
|
266 |
+
for i in range(s, e):
|
267 |
+
ov = Recognizer.overlapped_area(box, boxes[i])
|
268 |
+
_ov = Recognizer.overlapped_area(boxes[i], box)
|
269 |
+
if (ov, _ov) < (max_overlaped, _max_overlaped):
|
270 |
+
continue
|
271 |
+
max_overlaped_i = i
|
272 |
+
max_overlaped = ov
|
273 |
+
_max_overlaped = _ov
|
274 |
+
|
275 |
+
return max_overlaped_i
|
276 |
+
|
277 |
def preprocess(self, image_list):
|
278 |
preprocess_ops = []
|
279 |
for op_info in [
|
|
|
292 |
inputs.append({"image": np.array((im,)).astype('float32'), "scale_factor": np.array((im_info["scale_factor"],)).astype('float32')})
|
293 |
return inputs
|
294 |
|
|
|
295 |
def __call__(self, image_list, thr=0.7, batch_size=16):
|
296 |
res = []
|
297 |
imgs = []
|
deepdoc/{visual → vision}/seeit.py
RENAMED
File without changes
|
deepdoc/vision/table_structure_recognizer.py
ADDED
@@ -0,0 +1,556 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
from collections import Counter
|
5 |
+
from copy import deepcopy
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
from api.utils.file_utils import get_project_base_directory
|
10 |
+
from rag.nlp import huqie
|
11 |
+
from .recognizer import Recognizer
|
12 |
+
|
13 |
+
|
14 |
+
class TableStructureRecognizer(Recognizer):
|
15 |
+
def __init__(self):
|
16 |
+
self.labels = [
|
17 |
+
"table",
|
18 |
+
"table column",
|
19 |
+
"table row",
|
20 |
+
"table column header",
|
21 |
+
"table projected row header",
|
22 |
+
"table spanning cell",
|
23 |
+
]
|
24 |
+
super().__init__(self.labels, "tsr",
|
25 |
+
os.path.join(get_project_base_directory(), "rag/res/deepdoc/"))
|
26 |
+
|
27 |
+
def __call__(self, images, thr=0.5):
|
28 |
+
tbls = super().__call__(images, thr)
|
29 |
+
res = []
|
30 |
+
# align left&right for rows, align top&bottom for columns
|
31 |
+
for tbl in tbls:
|
32 |
+
lts = [{"label": b["type"],
|
33 |
+
"score": b["score"],
|
34 |
+
"x0": b["bbox"][0], "x1": b["bbox"][2],
|
35 |
+
"top": b["bbox"][1], "bottom": b["bbox"][-1]
|
36 |
+
} for b in tbl]
|
37 |
+
if not lts:
|
38 |
+
continue
|
39 |
+
|
40 |
+
left = [b["x0"] for b in lts if b["label"].find(
|
41 |
+
"row") > 0 or b["label"].find("header") > 0]
|
42 |
+
right = [b["x1"] for b in lts if b["label"].find(
|
43 |
+
"row") > 0 or b["label"].find("header") > 0]
|
44 |
+
if not left:
|
45 |
+
continue
|
46 |
+
left = np.median(left) if len(left) > 4 else np.min(left)
|
47 |
+
right = np.median(right) if len(right) > 4 else np.max(right)
|
48 |
+
for b in lts:
|
49 |
+
if b["label"].find("row") > 0 or b["label"].find("header") > 0:
|
50 |
+
if b["x0"] > left:
|
51 |
+
b["x0"] = left
|
52 |
+
if b["x1"] < right:
|
53 |
+
b["x1"] = right
|
54 |
+
|
55 |
+
top = [b["top"] for b in lts if b["label"] == "table column"]
|
56 |
+
bottom = [b["bottom"] for b in lts if b["label"] == "table column"]
|
57 |
+
if not top:
|
58 |
+
res.append(lts)
|
59 |
+
continue
|
60 |
+
top = np.median(top) if len(top) > 4 else np.min(top)
|
61 |
+
bottom = np.median(bottom) if len(bottom) > 4 else np.max(bottom)
|
62 |
+
for b in lts:
|
63 |
+
if b["label"] == "table column":
|
64 |
+
if b["top"] > top:
|
65 |
+
b["top"] = top
|
66 |
+
if b["bottom"] < bottom:
|
67 |
+
b["bottom"] = bottom
|
68 |
+
|
69 |
+
res.append(lts)
|
70 |
+
return res
|
71 |
+
|
72 |
+
@staticmethod
|
73 |
+
def is_caption(bx):
|
74 |
+
patt = [
|
75 |
+
r"[图表]+[ 0-9::]{2,}"
|
76 |
+
]
|
77 |
+
if any([re.match(p, bx["text"].strip()) for p in patt]) \
|
78 |
+
or bx["layout_type"].find("caption") >= 0:
|
79 |
+
return True
|
80 |
+
return False
|
81 |
+
|
82 |
+
def __blockType(self, b):
|
83 |
+
patt = [
|
84 |
+
("^(20|19)[0-9]{2}[年/-][0-9]{1,2}[月/-][0-9]{1,2}日*$", "Dt"),
|
85 |
+
(r"^(20|19)[0-9]{2}年$", "Dt"),
|
86 |
+
(r"^(20|19)[0-9]{2}[年-][0-9]{1,2}月*$", "Dt"),
|
87 |
+
("^[0-9]{1,2}[月-][0-9]{1,2}日*$", "Dt"),
|
88 |
+
(r"^第*[一二三四1-4]季度$", "Dt"),
|
89 |
+
(r"^(20|19)[0-9]{2}年*[一二三四1-4]季度$", "Dt"),
|
90 |
+
(r"^(20|19)[0-9]{2}[ABCDE]$", "Dt"),
|
91 |
+
("^[0-9.,+%/ -]+$", "Nu"),
|
92 |
+
(r"^[0-9A-Z/\._~-]+$", "Ca"),
|
93 |
+
(r"^[A-Z]*[a-z' -]+$", "En"),
|
94 |
+
(r"^[0-9.,+-]+[0-9A-Za-z/$¥%<>()()' -]+$", "NE"),
|
95 |
+
(r"^.{1}$", "Sg")
|
96 |
+
]
|
97 |
+
for p, n in patt:
|
98 |
+
if re.search(p, b["text"].strip()):
|
99 |
+
return n
|
100 |
+
tks = [t for t in huqie.qie(b["text"]).split(" ") if len(t) > 1]
|
101 |
+
if len(tks) > 3:
|
102 |
+
if len(tks) < 12:
|
103 |
+
return "Tx"
|
104 |
+
else:
|
105 |
+
return "Lx"
|
106 |
+
|
107 |
+
if len(tks) == 1 and huqie.tag(tks[0]) == "nr":
|
108 |
+
return "Nr"
|
109 |
+
|
110 |
+
return "Ot"
|
111 |
+
|
112 |
+
def construct_table(self, boxes, is_english=False, html=False):
|
113 |
+
cap = ""
|
114 |
+
i = 0
|
115 |
+
while i < len(boxes):
|
116 |
+
if self.is_caption(boxes[i]):
|
117 |
+
cap += boxes[i]["text"]
|
118 |
+
boxes.pop(i)
|
119 |
+
i -= 1
|
120 |
+
i += 1
|
121 |
+
|
122 |
+
if not boxes:
|
123 |
+
return []
|
124 |
+
for b in boxes:
|
125 |
+
b["btype"] = self.__blockType(b)
|
126 |
+
max_type = Counter([b["btype"] for b in boxes]).items()
|
127 |
+
max_type = max(max_type, key=lambda x: x[1])[0] if max_type else ""
|
128 |
+
logging.debug("MAXTYPE: " + max_type)
|
129 |
+
|
130 |
+
rowh = [b["R_bott"] - b["R_top"] for b in boxes if "R" in b]
|
131 |
+
rowh = np.min(rowh) if rowh else 0
|
132 |
+
boxes = self.sort_R_firstly(boxes, rowh / 2)
|
133 |
+
boxes[0]["rn"] = 0
|
134 |
+
rows = [[boxes[0]]]
|
135 |
+
btm = boxes[0]["bottom"]
|
136 |
+
for b in boxes[1:]:
|
137 |
+
b["rn"] = len(rows) - 1
|
138 |
+
lst_r = rows[-1]
|
139 |
+
if lst_r[-1].get("R", "") != b.get("R", "") \
|
140 |
+
or (b["top"] >= btm - 3 and lst_r[-1].get("R", "-1") != b.get("R", "-2")
|
141 |
+
): # new row
|
142 |
+
btm = b["bottom"]
|
143 |
+
b["rn"] += 1
|
144 |
+
rows.append([b])
|
145 |
+
continue
|
146 |
+
btm = (btm + b["bottom"]) / 2.
|
147 |
+
rows[-1].append(b)
|
148 |
+
|
149 |
+
colwm = [b["C_right"] - b["C_left"] for b in boxes if "C" in b]
|
150 |
+
colwm = np.min(colwm) if colwm else 0
|
151 |
+
crosspage = len(set([b["page_number"] for b in boxes])) > 1
|
152 |
+
if crosspage:
|
153 |
+
boxes = self.sort_X_firstly(boxes, colwm / 2, False)
|
154 |
+
else:
|
155 |
+
boxes = self.sort_C_firstly(boxes, colwm / 2)
|
156 |
+
boxes[0]["cn"] = 0
|
157 |
+
cols = [[boxes[0]]]
|
158 |
+
right = boxes[0]["x1"]
|
159 |
+
for b in boxes[1:]:
|
160 |
+
b["cn"] = len(cols) - 1
|
161 |
+
lst_c = cols[-1]
|
162 |
+
if (int(b.get("C", "1")) - int(lst_c[-1].get("C", "1")) == 1 and b["page_number"] == lst_c[-1][
|
163 |
+
"page_number"]) \
|
164 |
+
or (b["x0"] >= right and lst_c[-1].get("C", "-1") != b.get("C", "-2")): # new col
|
165 |
+
right = b["x1"]
|
166 |
+
b["cn"] += 1
|
167 |
+
cols.append([b])
|
168 |
+
continue
|
169 |
+
right = (right + b["x1"]) / 2.
|
170 |
+
cols[-1].append(b)
|
171 |
+
|
172 |
+
tbl = [[[] for _ in range(len(cols))] for _ in range(len(rows))]
|
173 |
+
for b in boxes:
|
174 |
+
tbl[b["rn"]][b["cn"]].append(b)
|
175 |
+
|
176 |
+
if len(rows) >= 4:
|
177 |
+
# remove single in column
|
178 |
+
j = 0
|
179 |
+
while j < len(tbl[0]):
|
180 |
+
e, ii = 0, 0
|
181 |
+
for i in range(len(tbl)):
|
182 |
+
if tbl[i][j]:
|
183 |
+
e += 1
|
184 |
+
ii = i
|
185 |
+
if e > 1:
|
186 |
+
break
|
187 |
+
if e > 1:
|
188 |
+
j += 1
|
189 |
+
continue
|
190 |
+
f = (j > 0 and tbl[ii][j - 1] and tbl[ii]
|
191 |
+
[j - 1][0].get("text")) or j == 0
|
192 |
+
ff = (j + 1 < len(tbl[ii]) and tbl[ii][j + 1] and tbl[ii]
|
193 |
+
[j + 1][0].get("text")) or j + 1 >= len(tbl[ii])
|
194 |
+
if f and ff:
|
195 |
+
j += 1
|
196 |
+
continue
|
197 |
+
bx = tbl[ii][j][0]
|
198 |
+
logging.debug("Relocate column single: " + bx["text"])
|
199 |
+
# j column only has one value
|
200 |
+
left, right = 100000, 100000
|
201 |
+
if j > 0 and not f:
|
202 |
+
for i in range(len(tbl)):
|
203 |
+
if tbl[i][j - 1]:
|
204 |
+
left = min(left, np.min(
|
205 |
+
[bx["x0"] - a["x1"] for a in tbl[i][j - 1]]))
|
206 |
+
if j + 1 < len(tbl[0]) and not ff:
|
207 |
+
for i in range(len(tbl)):
|
208 |
+
if tbl[i][j + 1]:
|
209 |
+
right = min(right, np.min(
|
210 |
+
[a["x0"] - bx["x1"] for a in tbl[i][j + 1]]))
|
211 |
+
assert left < 100000 or right < 100000
|
212 |
+
if left < right:
|
213 |
+
for jj in range(j, len(tbl[0])):
|
214 |
+
for i in range(len(tbl)):
|
215 |
+
for a in tbl[i][jj]:
|
216 |
+
a["cn"] -= 1
|
217 |
+
if tbl[ii][j - 1]:
|
218 |
+
tbl[ii][j - 1].extend(tbl[ii][j])
|
219 |
+
else:
|
220 |
+
tbl[ii][j - 1] = tbl[ii][j]
|
221 |
+
for i in range(len(tbl)):
|
222 |
+
tbl[i].pop(j)
|
223 |
+
|
224 |
+
else:
|
225 |
+
for jj in range(j + 1, len(tbl[0])):
|
226 |
+
for i in range(len(tbl)):
|
227 |
+
for a in tbl[i][jj]:
|
228 |
+
a["cn"] -= 1
|
229 |
+
if tbl[ii][j + 1]:
|
230 |
+
tbl[ii][j + 1].extend(tbl[ii][j])
|
231 |
+
else:
|
232 |
+
tbl[ii][j + 1] = tbl[ii][j]
|
233 |
+
for i in range(len(tbl)):
|
234 |
+
tbl[i].pop(j)
|
235 |
+
cols.pop(j)
|
236 |
+
assert len(cols) == len(tbl[0]), "Column NO. miss matched: %d vs %d" % (
|
237 |
+
len(cols), len(tbl[0]))
|
238 |
+
|
239 |
+
if len(cols) >= 4:
|
240 |
+
# remove single in row
|
241 |
+
i = 0
|
242 |
+
while i < len(tbl):
|
243 |
+
e, jj = 0, 0
|
244 |
+
for j in range(len(tbl[i])):
|
245 |
+
if tbl[i][j]:
|
246 |
+
e += 1
|
247 |
+
jj = j
|
248 |
+
if e > 1:
|
249 |
+
break
|
250 |
+
if e > 1:
|
251 |
+
i += 1
|
252 |
+
continue
|
253 |
+
f = (i > 0 and tbl[i - 1][jj] and tbl[i - 1]
|
254 |
+
[jj][0].get("text")) or i == 0
|
255 |
+
ff = (i + 1 < len(tbl) and tbl[i + 1][jj] and tbl[i + 1]
|
256 |
+
[jj][0].get("text")) or i + 1 >= len(tbl)
|
257 |
+
if f and ff:
|
258 |
+
i += 1
|
259 |
+
continue
|
260 |
+
|
261 |
+
bx = tbl[i][jj][0]
|
262 |
+
logging.debug("Relocate row single: " + bx["text"])
|
263 |
+
# i row only has one value
|
264 |
+
up, down = 100000, 100000
|
265 |
+
if i > 0 and not f:
|
266 |
+
for j in range(len(tbl[i - 1])):
|
267 |
+
if tbl[i - 1][j]:
|
268 |
+
up = min(up, np.min(
|
269 |
+
[bx["top"] - a["bottom"] for a in tbl[i - 1][j]]))
|
270 |
+
if i + 1 < len(tbl) and not ff:
|
271 |
+
for j in range(len(tbl[i + 1])):
|
272 |
+
if tbl[i + 1][j]:
|
273 |
+
down = min(down, np.min(
|
274 |
+
[a["top"] - bx["bottom"] for a in tbl[i + 1][j]]))
|
275 |
+
assert up < 100000 or down < 100000
|
276 |
+
if up < down:
|
277 |
+
for ii in range(i, len(tbl)):
|
278 |
+
for j in range(len(tbl[ii])):
|
279 |
+
for a in tbl[ii][j]:
|
280 |
+
a["rn"] -= 1
|
281 |
+
if tbl[i - 1][jj]:
|
282 |
+
tbl[i - 1][jj].extend(tbl[i][jj])
|
283 |
+
else:
|
284 |
+
tbl[i - 1][jj] = tbl[i][jj]
|
285 |
+
tbl.pop(i)
|
286 |
+
|
287 |
+
else:
|
288 |
+
for ii in range(i + 1, len(tbl)):
|
289 |
+
for j in range(len(tbl[ii])):
|
290 |
+
for a in tbl[ii][j]:
|
291 |
+
a["rn"] -= 1
|
292 |
+
if tbl[i + 1][jj]:
|
293 |
+
tbl[i + 1][jj].extend(tbl[i][jj])
|
294 |
+
else:
|
295 |
+
tbl[i + 1][jj] = tbl[i][jj]
|
296 |
+
tbl.pop(i)
|
297 |
+
rows.pop(i)
|
298 |
+
|
299 |
+
# which rows are headers
|
300 |
+
hdset = set([])
|
301 |
+
for i in range(len(tbl)):
|
302 |
+
cnt, h = 0, 0
|
303 |
+
for j, arr in enumerate(tbl[i]):
|
304 |
+
if not arr:
|
305 |
+
continue
|
306 |
+
cnt += 1
|
307 |
+
if max_type == "Nu" and arr[0]["btype"] == "Nu":
|
308 |
+
continue
|
309 |
+
if any([a.get("H") for a in arr]) \
|
310 |
+
or (max_type == "Nu" and arr[0]["btype"] != "Nu"):
|
311 |
+
h += 1
|
312 |
+
if h / cnt > 0.5:
|
313 |
+
hdset.add(i)
|
314 |
+
|
315 |
+
if html:
|
316 |
+
return [self.__html_table(cap, hdset,
|
317 |
+
self.__cal_spans(boxes, rows,
|
318 |
+
cols, tbl, True)
|
319 |
+
)]
|
320 |
+
|
321 |
+
return self.__desc_table(cap, hdset,
|
322 |
+
self.__cal_spans(boxes, rows, cols, tbl, False),
|
323 |
+
is_english)
|
324 |
+
|
325 |
+
def __html_table(self, cap, hdset, tbl):
|
326 |
+
# constrcut HTML
|
327 |
+
html = "<table>"
|
328 |
+
if cap:
|
329 |
+
html += f"<caption>{cap}</caption>"
|
330 |
+
for i in range(len(tbl)):
|
331 |
+
row = "<tr>"
|
332 |
+
txts = []
|
333 |
+
for j, arr in enumerate(tbl[i]):
|
334 |
+
if arr is None:
|
335 |
+
continue
|
336 |
+
if not arr:
|
337 |
+
row += "<td></td>" if i not in hdset else "<th></th>"
|
338 |
+
continue
|
339 |
+
txt = ""
|
340 |
+
if arr:
|
341 |
+
h = min(np.min([c["bottom"] - c["top"] for c in arr]) / 2, 10)
|
342 |
+
txt = "".join([c["text"]
|
343 |
+
for c in self.sort_Y_firstly(arr, h)])
|
344 |
+
txts.append(txt)
|
345 |
+
sp = ""
|
346 |
+
if arr[0].get("colspan"):
|
347 |
+
sp = "colspan={}".format(arr[0]["colspan"])
|
348 |
+
if arr[0].get("rowspan"):
|
349 |
+
sp += " rowspan={}".format(arr[0]["rowspan"])
|
350 |
+
if i in hdset:
|
351 |
+
row += f"<th {sp} >" + txt + "</th>"
|
352 |
+
else:
|
353 |
+
row += f"<td {sp} >" + txt + "</td>"
|
354 |
+
|
355 |
+
if i in hdset:
|
356 |
+
if all([t in hdset for t in txts]):
|
357 |
+
continue
|
358 |
+
for t in txts:
|
359 |
+
hdset.add(t)
|
360 |
+
|
361 |
+
if row != "<tr>":
|
362 |
+
row += "</tr>"
|
363 |
+
else:
|
364 |
+
row = ""
|
365 |
+
html += "\n" + row
|
366 |
+
html += "\n</table>"
|
367 |
+
return html
|
368 |
+
|
369 |
+
def __desc_table(self, cap, hdr_rowno, tbl, is_english):
|
370 |
+
# get text of every colomn in header row to become header text
|
371 |
+
clmno = len(tbl[0])
|
372 |
+
rowno = len(tbl)
|
373 |
+
headers = {}
|
374 |
+
hdrset = set()
|
375 |
+
lst_hdr = []
|
376 |
+
de = "的" if not is_english else " for "
|
377 |
+
for r in sorted(list(hdr_rowno)):
|
378 |
+
headers[r] = ["" for _ in range(clmno)]
|
379 |
+
for i in range(clmno):
|
380 |
+
if not tbl[r][i]:
|
381 |
+
continue
|
382 |
+
txt = "".join([a["text"].strip() for a in tbl[r][i]])
|
383 |
+
headers[r][i] = txt
|
384 |
+
hdrset.add(txt)
|
385 |
+
if all([not t for t in headers[r]]):
|
386 |
+
del headers[r]
|
387 |
+
hdr_rowno.remove(r)
|
388 |
+
continue
|
389 |
+
for j in range(clmno):
|
390 |
+
if headers[r][j]:
|
391 |
+
continue
|
392 |
+
if j >= len(lst_hdr):
|
393 |
+
break
|
394 |
+
headers[r][j] = lst_hdr[j]
|
395 |
+
lst_hdr = headers[r]
|
396 |
+
for i in range(rowno):
|
397 |
+
if i not in hdr_rowno:
|
398 |
+
continue
|
399 |
+
for j in range(i + 1, rowno):
|
400 |
+
if j not in hdr_rowno:
|
401 |
+
break
|
402 |
+
for k in range(clmno):
|
403 |
+
if not headers[j - 1][k]:
|
404 |
+
continue
|
405 |
+
if headers[j][k].find(headers[j - 1][k]) >= 0:
|
406 |
+
continue
|
407 |
+
if len(headers[j][k]) > len(headers[j - 1][k]):
|
408 |
+
headers[j][k] += (de if headers[j][k]
|
409 |
+
else "") + headers[j - 1][k]
|
410 |
+
else:
|
411 |
+
headers[j][k] = headers[j - 1][k] \
|
412 |
+
+ (de if headers[j - 1][k] else "") \
|
413 |
+
+ headers[j][k]
|
414 |
+
|
415 |
+
logging.debug(
|
416 |
+
f">>>>>>>>>>>>>>>>>{cap}:SIZE:{rowno}X{clmno} Header: {hdr_rowno}")
|
417 |
+
row_txt = []
|
418 |
+
for i in range(rowno):
|
419 |
+
if i in hdr_rowno:
|
420 |
+
continue
|
421 |
+
rtxt = []
|
422 |
+
|
423 |
+
def append(delimer):
|
424 |
+
nonlocal rtxt, row_txt
|
425 |
+
rtxt = delimer.join(rtxt)
|
426 |
+
if row_txt and len(row_txt[-1]) + len(rtxt) < 64:
|
427 |
+
row_txt[-1] += "\n" + rtxt
|
428 |
+
else:
|
429 |
+
row_txt.append(rtxt)
|
430 |
+
|
431 |
+
r = 0
|
432 |
+
if len(headers.items()):
|
433 |
+
_arr = [(i - r, r) for r, _ in headers.items() if r < i]
|
434 |
+
if _arr:
|
435 |
+
_, r = min(_arr, key=lambda x: x[0])
|
436 |
+
|
437 |
+
if r not in headers and clmno <= 2:
|
438 |
+
for j in range(clmno):
|
439 |
+
if not tbl[i][j]:
|
440 |
+
continue
|
441 |
+
txt = "".join([a["text"].strip() for a in tbl[i][j]])
|
442 |
+
if txt:
|
443 |
+
rtxt.append(txt)
|
444 |
+
if rtxt:
|
445 |
+
append(":")
|
446 |
+
continue
|
447 |
+
|
448 |
+
for j in range(clmno):
|
449 |
+
if not tbl[i][j]:
|
450 |
+
continue
|
451 |
+
txt = "".join([a["text"].strip() for a in tbl[i][j]])
|
452 |
+
if not txt:
|
453 |
+
continue
|
454 |
+
ctt = headers[r][j] if r in headers else ""
|
455 |
+
if ctt:
|
456 |
+
ctt += ":"
|
457 |
+
ctt += txt
|
458 |
+
if ctt:
|
459 |
+
rtxt.append(ctt)
|
460 |
+
|
461 |
+
if rtxt:
|
462 |
+
row_txt.append("; ".join(rtxt))
|
463 |
+
|
464 |
+
if cap:
|
465 |
+
if is_english:
|
466 |
+
from_ = " in "
|
467 |
+
else:
|
468 |
+
from_ = "来自"
|
469 |
+
row_txt = [t + f"\t——{from_}“{cap}”" for t in row_txt]
|
470 |
+
return row_txt
|
471 |
+
|
472 |
+
def __cal_spans(self, boxes, rows, cols, tbl, html=True):
|
473 |
+
# caculate span
|
474 |
+
clft = [np.mean([c.get("C_left", c["x0"]) for c in cln])
|
475 |
+
for cln in cols]
|
476 |
+
crgt = [np.mean([c.get("C_right", c["x1"]) for c in cln])
|
477 |
+
for cln in cols]
|
478 |
+
rtop = [np.mean([c.get("R_top", c["top"]) for c in row])
|
479 |
+
for row in rows]
|
480 |
+
rbtm = [np.mean([c.get("R_btm", c["bottom"])
|
481 |
+
for c in row]) for row in rows]
|
482 |
+
for b in boxes:
|
483 |
+
if "SP" not in b:
|
484 |
+
continue
|
485 |
+
b["colspan"] = [b["cn"]]
|
486 |
+
b["rowspan"] = [b["rn"]]
|
487 |
+
# col span
|
488 |
+
for j in range(0, len(clft)):
|
489 |
+
if j == b["cn"]:
|
490 |
+
continue
|
491 |
+
if clft[j] + (crgt[j] - clft[j]) / 2 < b["H_left"]:
|
492 |
+
continue
|
493 |
+
if crgt[j] - (crgt[j] - clft[j]) / 2 > b["H_right"]:
|
494 |
+
continue
|
495 |
+
b["colspan"].append(j)
|
496 |
+
# row span
|
497 |
+
for j in range(0, len(rtop)):
|
498 |
+
if j == b["rn"]:
|
499 |
+
continue
|
500 |
+
if rtop[j] + (rbtm[j] - rtop[j]) / 2 < b["H_top"]:
|
501 |
+
continue
|
502 |
+
if rbtm[j] - (rbtm[j] - rtop[j]) / 2 > b["H_bott"]:
|
503 |
+
continue
|
504 |
+
b["rowspan"].append(j)
|
505 |
+
|
506 |
+
def join(arr):
|
507 |
+
if not arr:
|
508 |
+
return ""
|
509 |
+
return "".join([t["text"] for t in arr])
|
510 |
+
|
511 |
+
# rm the spaning cells
|
512 |
+
for i in range(len(tbl)):
|
513 |
+
for j, arr in enumerate(tbl[i]):
|
514 |
+
if not arr:
|
515 |
+
continue
|
516 |
+
if all(["rowspan" not in a and "colspan" not in a for a in arr]):
|
517 |
+
continue
|
518 |
+
rowspan, colspan = [], []
|
519 |
+
for a in arr:
|
520 |
+
if isinstance(a.get("rowspan", 0), list):
|
521 |
+
rowspan.extend(a["rowspan"])
|
522 |
+
if isinstance(a.get("colspan", 0), list):
|
523 |
+
colspan.extend(a["colspan"])
|
524 |
+
rowspan, colspan = set(rowspan), set(colspan)
|
525 |
+
if len(rowspan) < 2 and len(colspan) < 2:
|
526 |
+
for a in arr:
|
527 |
+
if "rowspan" in a:
|
528 |
+
del a["rowspan"]
|
529 |
+
if "colspan" in a:
|
530 |
+
del a["colspan"]
|
531 |
+
continue
|
532 |
+
rowspan, colspan = sorted(rowspan), sorted(colspan)
|
533 |
+
rowspan = list(range(rowspan[0], rowspan[-1] + 1))
|
534 |
+
colspan = list(range(colspan[0], colspan[-1] + 1))
|
535 |
+
assert i in rowspan, rowspan
|
536 |
+
assert j in colspan, colspan
|
537 |
+
arr = []
|
538 |
+
for r in rowspan:
|
539 |
+
for c in colspan:
|
540 |
+
arr_txt = join(arr)
|
541 |
+
if tbl[r][c] and join(tbl[r][c]) != arr_txt:
|
542 |
+
arr.extend(tbl[r][c])
|
543 |
+
tbl[r][c] = None if html else arr
|
544 |
+
for a in arr:
|
545 |
+
if len(rowspan) > 1:
|
546 |
+
a["rowspan"] = len(rowspan)
|
547 |
+
elif "rowspan" in a:
|
548 |
+
del a["rowspan"]
|
549 |
+
if len(colspan) > 1:
|
550 |
+
a["colspan"] = len(colspan)
|
551 |
+
elif "colspan" in a:
|
552 |
+
del a["colspan"]
|
553 |
+
tbl[rowspan[0]][colspan[0]] = arr
|
554 |
+
|
555 |
+
return tbl
|
556 |
+
|
deepdoc/visual/__init__.py
DELETED
@@ -1,2 +0,0 @@
|
|
1 |
-
from .ocr import OCR
|
2 |
-
from .recognizer import Recognizer
|
|
|
|
|
|
rag/svr/task_broker.py
CHANGED
@@ -21,7 +21,7 @@ from datetime import datetime
|
|
21 |
from api.db.db_models import Task
|
22 |
from api.db.db_utils import bulk_insert_into_db
|
23 |
from api.db.services.task_service import TaskService
|
24 |
-
from deepdoc.parser import
|
25 |
from rag.settings import cron_logger
|
26 |
from rag.utils import MINIO
|
27 |
from rag.utils import findMaxTm
|
@@ -80,7 +80,7 @@ def dispatch():
|
|
80 |
|
81 |
tsks = []
|
82 |
if r["type"] == FileType.PDF.value:
|
83 |
-
pages =
|
84 |
for s,e in r["parser_config"].get("pages", [(0,100000)]):
|
85 |
e = min(e, pages)
|
86 |
for p in range(s, e, 10):
|
|
|
21 |
from api.db.db_models import Task
|
22 |
from api.db.db_utils import bulk_insert_into_db
|
23 |
from api.db.services.task_service import TaskService
|
24 |
+
from deepdoc.parser import PdfParser
|
25 |
from rag.settings import cron_logger
|
26 |
from rag.utils import MINIO
|
27 |
from rag.utils import findMaxTm
|
|
|
80 |
|
81 |
tsks = []
|
82 |
if r["type"] == FileType.PDF.value:
|
83 |
+
pages = PdfParser.total_page_number(r["name"], MINIO.get(r["kb_id"], r["location"]))
|
84 |
for s,e in r["parser_config"].get("pages", [(0,100000)]):
|
85 |
e = min(e, pages)
|
86 |
for p in range(s, e, 10):
|