LiuHua
Feiue
commited on
Commit
·
633d85b
1
Parent(s):
99bbd67
SDK for Assistant (#2266)
Browse files### What problem does this PR solve?
SDK for Assistant
#1102
### Type of change
- [x] New Feature (non-breaking change which adds functionality)
Co-authored-by: Feiue <[email protected]>
- api/apps/sdk/assistant.py +293 -0
- sdk/python/ragflow/__init__.py +2 -1
- sdk/python/ragflow/modules/chat_assistant.py +56 -0
- sdk/python/ragflow/ragflow.py +65 -0
- sdk/python/test/common.py +1 -1
- sdk/python/test/t_assistant.py +66 -0
api/apps/sdk/assistant.py
ADDED
@@ -0,0 +1,293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
#
|
16 |
+
from flask import request
|
17 |
+
|
18 |
+
from api.db import StatusEnum
|
19 |
+
from api.db.services.dialog_service import DialogService
|
20 |
+
from api.db.services.document_service import DocumentService
|
21 |
+
from api.db.services.knowledgebase_service import KnowledgebaseService
|
22 |
+
from api.db.services.user_service import TenantService
|
23 |
+
from api.settings import RetCode
|
24 |
+
from api.utils import get_uuid
|
25 |
+
from api.utils.api_utils import get_data_error_result, token_required
|
26 |
+
from api.utils.api_utils import get_json_result
|
27 |
+
|
28 |
+
|
29 |
+
@manager.route('/save', methods=['POST'])
|
30 |
+
@token_required
|
31 |
+
def save(tenant_id):
|
32 |
+
req = request.json
|
33 |
+
id = req.get("id")
|
34 |
+
# dataset
|
35 |
+
if req.get("knowledgebases") == []:
|
36 |
+
return get_data_error_result(retmsg="knowledgebases can not be empty list")
|
37 |
+
kb_list = []
|
38 |
+
if req.get("knowledgebases"):
|
39 |
+
for kb in req.get("knowledgebases"):
|
40 |
+
if not kb["id"]:
|
41 |
+
return get_data_error_result(retmsg="knowledgebase needs id")
|
42 |
+
if not KnowledgebaseService.query(id=kb["id"], tenant_id=tenant_id):
|
43 |
+
return get_data_error_result(retmsg="you do not own the knowledgebase")
|
44 |
+
if not DocumentService.query(kb_id=kb["id"]):
|
45 |
+
return get_data_error_result(retmsg="There is a invalid knowledgebase")
|
46 |
+
kb_list.append(kb["id"])
|
47 |
+
req["kb_ids"] = kb_list
|
48 |
+
# llm
|
49 |
+
llm = req.get("llm")
|
50 |
+
if llm:
|
51 |
+
if "model_name" in llm:
|
52 |
+
req["llm_id"] = llm.pop("model_name")
|
53 |
+
req["llm_setting"] = req.pop("llm")
|
54 |
+
e, tenant = TenantService.get_by_id(tenant_id)
|
55 |
+
if not e:
|
56 |
+
return get_data_error_result(retmsg="Tenant not found!")
|
57 |
+
# prompt
|
58 |
+
prompt = req.get("prompt")
|
59 |
+
key_mapping = {"parameters": "variables",
|
60 |
+
"prologue": "opener",
|
61 |
+
"quote": "show_quote",
|
62 |
+
"system": "prompt",
|
63 |
+
"rerank_id": "rerank_model",
|
64 |
+
"vector_similarity_weight": "keywords_similarity_weight"}
|
65 |
+
key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
|
66 |
+
if prompt:
|
67 |
+
for new_key, old_key in key_mapping.items():
|
68 |
+
if old_key in prompt:
|
69 |
+
prompt[new_key] = prompt.pop(old_key)
|
70 |
+
for key in key_list:
|
71 |
+
if key in prompt:
|
72 |
+
req[key] = prompt.pop(key)
|
73 |
+
req["prompt_config"] = req.pop("prompt")
|
74 |
+
# create
|
75 |
+
if not id:
|
76 |
+
# dataset
|
77 |
+
if not kb_list:
|
78 |
+
return get_data_error_result(retmsg="knowledgebase is required!")
|
79 |
+
# init
|
80 |
+
req["id"] = get_uuid()
|
81 |
+
req["description"] = req.get("description", "A helpful Assistant")
|
82 |
+
req["icon"] = req.get("avatar", "")
|
83 |
+
req["top_n"] = req.get("top_n", 6)
|
84 |
+
req["top_k"] = req.get("top_k", 1024)
|
85 |
+
req["rerank_id"] = req.get("rerank_id", "")
|
86 |
+
req["llm_id"] = req.get("llm_id", tenant.llm_id)
|
87 |
+
if not req.get("name"):
|
88 |
+
return get_data_error_result(retmsg="name is required.")
|
89 |
+
if DialogService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value):
|
90 |
+
return get_data_error_result(retmsg="Duplicated assistant name in creating dataset.")
|
91 |
+
# tenant_id
|
92 |
+
if req.get("tenant_id"):
|
93 |
+
return get_data_error_result(retmsg="tenant_id must not be provided.")
|
94 |
+
req["tenant_id"] = tenant_id
|
95 |
+
# prompt more parameter
|
96 |
+
default_prompt = {
|
97 |
+
"system": """你是一个智能助手,请总结知识库的内容来回答问题,请列举知识库中的数据详细回答。当所有知识库内容都与问题无关时,你的回答必须包括“知识库中未找到您要的答案!”这句话。回答需要考虑聊天历史。
|
98 |
+
以下是知识库:
|
99 |
+
{knowledge}
|
100 |
+
以上是知识库。""",
|
101 |
+
"prologue": "您好,我是您的助手小樱,长得可爱又善良,can I help you?",
|
102 |
+
"parameters": [
|
103 |
+
{"key": "knowledge", "optional": False}
|
104 |
+
],
|
105 |
+
"empty_response": "Sorry! 知识库中未找到相关内容!"
|
106 |
+
}
|
107 |
+
key_list_2 = ["system", "prologue", "parameters", "empty_response"]
|
108 |
+
if "prompt_config" not in req:
|
109 |
+
req['prompt_config'] = {}
|
110 |
+
for key in key_list_2:
|
111 |
+
temp = req['prompt_config'].get(key)
|
112 |
+
if not temp:
|
113 |
+
req['prompt_config'][key] = default_prompt[key]
|
114 |
+
for p in req['prompt_config']["parameters"]:
|
115 |
+
if p["optional"]:
|
116 |
+
continue
|
117 |
+
if req['prompt_config']["system"].find("{%s}" % p["key"]) < 0:
|
118 |
+
return get_data_error_result(
|
119 |
+
retmsg="Parameter '{}' is not used".format(p["key"]))
|
120 |
+
# save
|
121 |
+
if not DialogService.save(**req):
|
122 |
+
return get_data_error_result(retmsg="Fail to new an assistant!")
|
123 |
+
# response
|
124 |
+
e, res = DialogService.get_by_id(req["id"])
|
125 |
+
if not e:
|
126 |
+
return get_data_error_result(retmsg="Fail to new an assistant!")
|
127 |
+
res = res.to_json()
|
128 |
+
renamed_dict = {}
|
129 |
+
for key, value in res["prompt_config"].items():
|
130 |
+
new_key = key_mapping.get(key, key)
|
131 |
+
renamed_dict[new_key] = value
|
132 |
+
res["prompt"] = renamed_dict
|
133 |
+
del res["prompt_config"]
|
134 |
+
new_dict = {"similarity_threshold": res["similarity_threshold"],
|
135 |
+
"keywords_similarity_weight": res["vector_similarity_weight"],
|
136 |
+
"top_n": res["top_n"],
|
137 |
+
"rerank_model": res['rerank_id']}
|
138 |
+
res["prompt"].update(new_dict)
|
139 |
+
for key in key_list:
|
140 |
+
del res[key]
|
141 |
+
res["llm"] = res.pop("llm_setting")
|
142 |
+
res["llm"]["model_name"] = res.pop("llm_id")
|
143 |
+
del res["kb_ids"]
|
144 |
+
res["knowledgebases"] = req["knowledgebases"]
|
145 |
+
res["avatar"] = res.pop("icon")
|
146 |
+
return get_json_result(data=res)
|
147 |
+
else:
|
148 |
+
# authorization
|
149 |
+
if not DialogService.query(tenant_id=tenant_id, id=req["id"], status=StatusEnum.VALID.value):
|
150 |
+
return get_json_result(data=False, retmsg='You do not own the assistant', retcode=RetCode.OPERATING_ERROR)
|
151 |
+
# prompt
|
152 |
+
e, res = DialogService.get_by_id(req["id"])
|
153 |
+
res = res.to_json()
|
154 |
+
if "name" in req:
|
155 |
+
if not req.get("name"):
|
156 |
+
return get_data_error_result(retmsg="name is not empty.")
|
157 |
+
if req["name"].lower() != res["name"].lower() \
|
158 |
+
and len(DialogService.query(name=req["name"], tenant_id=tenant_id,status=StatusEnum.VALID.value)) > 0:
|
159 |
+
return get_data_error_result(retmsg="Duplicated knowledgebase name in updating dataset.")
|
160 |
+
if "prompt_config" in req:
|
161 |
+
res["prompt_config"].update(req["prompt_config"])
|
162 |
+
for p in res["prompt_config"]["parameters"]:
|
163 |
+
if p["optional"]:
|
164 |
+
continue
|
165 |
+
if res["prompt_config"]["system"].find("{%s}" % p["key"]) < 0:
|
166 |
+
return get_data_error_result(retmsg="Parameter '{}' is not used".format(p["key"]))
|
167 |
+
if "llm_setting" in req:
|
168 |
+
res["llm_setting"].update(req["llm_setting"])
|
169 |
+
req["prompt_config"] = res["prompt_config"]
|
170 |
+
req["llm_setting"] = res["llm_setting"]
|
171 |
+
# avatar
|
172 |
+
if "avatar" in req:
|
173 |
+
req["icon"] = req.pop("avatar")
|
174 |
+
assistant_id = req.pop("id")
|
175 |
+
if "knowledgebases" in req:
|
176 |
+
req.pop("knowledgebases")
|
177 |
+
if not DialogService.update_by_id(assistant_id, req):
|
178 |
+
return get_data_error_result(retmsg="Assistant not found!")
|
179 |
+
return get_json_result(data=True)
|
180 |
+
|
181 |
+
|
182 |
+
@manager.route('/delete', methods=['DELETE'])
|
183 |
+
@token_required
|
184 |
+
def delete(tenant_id):
|
185 |
+
req = request.args
|
186 |
+
if "id" not in req:
|
187 |
+
return get_data_error_result(retmsg="id is required")
|
188 |
+
id = req['id']
|
189 |
+
if not DialogService.query(tenant_id=tenant_id, id=id,status=StatusEnum.VALID.value):
|
190 |
+
return get_json_result(data=False, retmsg='you do not own the assistant.', retcode=RetCode.OPERATING_ERROR)
|
191 |
+
|
192 |
+
temp_dict = {"status": StatusEnum.INVALID.value}
|
193 |
+
DialogService.update_by_id(req["id"], temp_dict)
|
194 |
+
return get_json_result(data=True)
|
195 |
+
|
196 |
+
|
197 |
+
@manager.route('/get', methods=['GET'])
|
198 |
+
@token_required
|
199 |
+
def get(tenant_id):
|
200 |
+
req = request.args
|
201 |
+
if "id" in req:
|
202 |
+
id = req["id"]
|
203 |
+
ass = DialogService.query(tenant_id=tenant_id, id=id,status=StatusEnum.VALID.value)
|
204 |
+
if not ass:
|
205 |
+
return get_json_result(data=False, retmsg='You do not own the assistant.', retcode=RetCode.OPERATING_ERROR)
|
206 |
+
if "name" in req:
|
207 |
+
name = req["name"]
|
208 |
+
if ass[0].name != name:
|
209 |
+
return get_json_result(data=False, retmsg='name does not match id.', retcode=RetCode.OPERATING_ERROR)
|
210 |
+
res=ass[0].to_json()
|
211 |
+
else:
|
212 |
+
if "name" in req:
|
213 |
+
name = req["name"]
|
214 |
+
ass = DialogService.query(name=name, tenant_id=tenant_id,status=StatusEnum.VALID.value)
|
215 |
+
if not ass:
|
216 |
+
return get_json_result(data=False, retmsg='You do not own the dataset.',retcode=RetCode.OPERATING_ERROR)
|
217 |
+
res=ass[0].to_json()
|
218 |
+
else:
|
219 |
+
return get_data_error_result(retmsg="At least one of `id` or `name` must be provided.")
|
220 |
+
renamed_dict = {}
|
221 |
+
key_mapping = {"parameters": "variables",
|
222 |
+
"prologue": "opener",
|
223 |
+
"quote": "show_quote",
|
224 |
+
"system": "prompt",
|
225 |
+
"rerank_id": "rerank_model",
|
226 |
+
"vector_similarity_weight": "keywords_similarity_weight"}
|
227 |
+
key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
|
228 |
+
for key, value in res["prompt_config"].items():
|
229 |
+
new_key = key_mapping.get(key, key)
|
230 |
+
renamed_dict[new_key] = value
|
231 |
+
res["prompt"] = renamed_dict
|
232 |
+
del res["prompt_config"]
|
233 |
+
new_dict = {"similarity_threshold": res["similarity_threshold"],
|
234 |
+
"keywords_similarity_weight": res["vector_similarity_weight"],
|
235 |
+
"top_n": res["top_n"],
|
236 |
+
"rerank_model": res['rerank_id']}
|
237 |
+
res["prompt"].update(new_dict)
|
238 |
+
for key in key_list:
|
239 |
+
del res[key]
|
240 |
+
res["llm"] = res.pop("llm_setting")
|
241 |
+
res["llm"]["model_name"] = res.pop("llm_id")
|
242 |
+
kb_list = []
|
243 |
+
for kb_id in res["kb_ids"]:
|
244 |
+
kb = KnowledgebaseService.query(id=kb_id)
|
245 |
+
kb_list.append(kb[0].to_json())
|
246 |
+
del res["kb_ids"]
|
247 |
+
res["knowledgebases"] = kb_list
|
248 |
+
res["avatar"] = res.pop("icon")
|
249 |
+
return get_json_result(data=res)
|
250 |
+
|
251 |
+
|
252 |
+
@manager.route('/list', methods=['GET'])
|
253 |
+
@token_required
|
254 |
+
def list_assistants(tenant_id):
|
255 |
+
assts = DialogService.query(
|
256 |
+
tenant_id=tenant_id,
|
257 |
+
status=StatusEnum.VALID.value,
|
258 |
+
reverse=True,
|
259 |
+
order_by=DialogService.model.create_time)
|
260 |
+
assts = [d.to_dict() for d in assts]
|
261 |
+
list_assts=[]
|
262 |
+
renamed_dict = {}
|
263 |
+
key_mapping = {"parameters": "variables",
|
264 |
+
"prologue": "opener",
|
265 |
+
"quote": "show_quote",
|
266 |
+
"system": "prompt",
|
267 |
+
"rerank_id": "rerank_model",
|
268 |
+
"vector_similarity_weight": "keywords_similarity_weight"}
|
269 |
+
key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
|
270 |
+
for res in assts:
|
271 |
+
for key, value in res["prompt_config"].items():
|
272 |
+
new_key = key_mapping.get(key, key)
|
273 |
+
renamed_dict[new_key] = value
|
274 |
+
res["prompt"] = renamed_dict
|
275 |
+
del res["prompt_config"]
|
276 |
+
new_dict = {"similarity_threshold": res["similarity_threshold"],
|
277 |
+
"keywords_similarity_weight": res["vector_similarity_weight"],
|
278 |
+
"top_n": res["top_n"],
|
279 |
+
"rerank_model": res['rerank_id']}
|
280 |
+
res["prompt"].update(new_dict)
|
281 |
+
for key in key_list:
|
282 |
+
del res[key]
|
283 |
+
res["llm"] = res.pop("llm_setting")
|
284 |
+
res["llm"]["model_name"] = res.pop("llm_id")
|
285 |
+
kb_list = []
|
286 |
+
for kb_id in res["kb_ids"]:
|
287 |
+
kb = KnowledgebaseService.query(id=kb_id)
|
288 |
+
kb_list.append(kb[0].to_json())
|
289 |
+
del res["kb_ids"]
|
290 |
+
res["knowledgebases"] = kb_list
|
291 |
+
res["avatar"] = res.pop("icon")
|
292 |
+
list_assts.append(res)
|
293 |
+
return get_json_result(data=list_assts)
|
sdk/python/ragflow/__init__.py
CHANGED
@@ -3,4 +3,5 @@ import importlib.metadata
|
|
3 |
__version__ = importlib.metadata.version("ragflow")
|
4 |
|
5 |
from .ragflow import RAGFlow
|
6 |
-
from .modules.dataset import DataSet
|
|
|
|
3 |
__version__ = importlib.metadata.version("ragflow")
|
4 |
|
5 |
from .ragflow import RAGFlow
|
6 |
+
from .modules.dataset import DataSet
|
7 |
+
from .modules.chat_assistant import Assistant
|
sdk/python/ragflow/modules/chat_assistant.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .base import Base
|
2 |
+
|
3 |
+
|
4 |
+
class Assistant(Base):
|
5 |
+
def __init__(self, rag, res_dict):
|
6 |
+
self.id=""
|
7 |
+
self.name = "assistant"
|
8 |
+
self.avatar = "path/to/avatar"
|
9 |
+
self.knowledgebases = ["kb1"]
|
10 |
+
self.llm = Assistant.LLM(rag, {})
|
11 |
+
self.prompt = Assistant.Prompt(rag, {})
|
12 |
+
super().__init__(rag, res_dict)
|
13 |
+
|
14 |
+
class LLM(Base):
|
15 |
+
def __init__(self, rag, res_dict):
|
16 |
+
self.model_name = "deepseek-chat"
|
17 |
+
self.temperature = 0.1
|
18 |
+
self.top_p = 0.3
|
19 |
+
self.presence_penalty = 0.4
|
20 |
+
self.frequency_penalty = 0.7
|
21 |
+
self.max_tokens = 512
|
22 |
+
super().__init__(rag, res_dict)
|
23 |
+
|
24 |
+
class Prompt(Base):
|
25 |
+
def __init__(self, rag, res_dict):
|
26 |
+
self.similarity_threshold = 0.2
|
27 |
+
self.keywords_similarity_weight = 0.7
|
28 |
+
self.top_n = 8
|
29 |
+
self.variables = [{"key": "knowledge", "optional": True}]
|
30 |
+
self.rerank_model = None
|
31 |
+
self.empty_response = None
|
32 |
+
self.opener = "Hi! I'm your assistant, what can I do for you?"
|
33 |
+
self.show_quote = True
|
34 |
+
self.prompt = (
|
35 |
+
"You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. "
|
36 |
+
"Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, "
|
37 |
+
"your answer must include the sentence 'The answer you are looking for is not found in the knowledge base!' "
|
38 |
+
"Answers need to consider chat history.\nHere is the knowledge base:\n{knowledge}\nThe above is the knowledge base."
|
39 |
+
)
|
40 |
+
super().__init__(rag, res_dict)
|
41 |
+
|
42 |
+
def save(self) -> bool:
|
43 |
+
res = self.post('/assistant/save',
|
44 |
+
{"id": self.id, "name": self.name, "avatar": self.avatar, "knowledgebases":self.knowledgebases,
|
45 |
+
"llm":self.llm.to_json(),"prompt":self.prompt.to_json()
|
46 |
+
})
|
47 |
+
res = res.json()
|
48 |
+
if res.get("retmsg") == "success": return True
|
49 |
+
raise Exception(res["retmsg"])
|
50 |
+
|
51 |
+
def delete(self) -> bool:
|
52 |
+
res = self.rm('/assistant/delete',
|
53 |
+
{"id": self.id})
|
54 |
+
res = res.json()
|
55 |
+
if res.get("retmsg") == "success": return True
|
56 |
+
raise Exception(res["retmsg"])
|
sdk/python/ragflow/ragflow.py
CHANGED
@@ -17,6 +17,8 @@ from typing import List
|
|
17 |
|
18 |
import requests
|
19 |
|
|
|
|
|
20 |
from .modules.dataset import DataSet
|
21 |
|
22 |
|
@@ -78,3 +80,66 @@ class RAGFlow:
|
|
78 |
if res.get("retmsg") == "success":
|
79 |
return DataSet(self, res['data'])
|
80 |
raise Exception(res["retmsg"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
import requests
|
19 |
|
20 |
+
|
21 |
+
from .modules.chat_assistant import Assistant
|
22 |
from .modules.dataset import DataSet
|
23 |
|
24 |
|
|
|
80 |
if res.get("retmsg") == "success":
|
81 |
return DataSet(self, res['data'])
|
82 |
raise Exception(res["retmsg"])
|
83 |
+
|
84 |
+
def create_assistant(self, name: str = "assistant", avatar: str = "path", knowledgebases: List[DataSet] = [],
|
85 |
+
llm: Assistant.LLM = None, prompt: Assistant.Prompt = None) -> Assistant:
|
86 |
+
datasets = []
|
87 |
+
for dataset in knowledgebases:
|
88 |
+
datasets.append(dataset.to_json())
|
89 |
+
|
90 |
+
if llm is None:
|
91 |
+
llm = Assistant.LLM(self, {"model_name": "deepseek-chat",
|
92 |
+
"temperature": 0.1,
|
93 |
+
"top_p": 0.3,
|
94 |
+
"presence_penalty": 0.4,
|
95 |
+
"frequency_penalty": 0.7,
|
96 |
+
"max_tokens": 512, })
|
97 |
+
if prompt is None:
|
98 |
+
prompt = Assistant.Prompt(self, {"similarity_threshold": 0.2,
|
99 |
+
"keywords_similarity_weight": 0.7,
|
100 |
+
"top_n": 8,
|
101 |
+
"variables": [{
|
102 |
+
"key": "knowledge",
|
103 |
+
"optional": True
|
104 |
+
}], "rerank_model": "",
|
105 |
+
"empty_response": None,
|
106 |
+
"opener": None,
|
107 |
+
"show_quote": True,
|
108 |
+
"prompt": None})
|
109 |
+
if prompt.opener is None:
|
110 |
+
prompt.opener = "Hi! I'm your assistant, what can I do for you?"
|
111 |
+
if prompt.prompt is None:
|
112 |
+
prompt.prompt = (
|
113 |
+
"You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. "
|
114 |
+
"Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, "
|
115 |
+
"your answer must include the sentence 'The answer you are looking for is not found in the knowledge base!' "
|
116 |
+
"Answers need to consider chat history.\nHere is the knowledge base:\n{knowledge}\nThe above is the knowledge base."
|
117 |
+
)
|
118 |
+
|
119 |
+
temp_dict = {"name": name,
|
120 |
+
"avatar": avatar,
|
121 |
+
"knowledgebases": datasets,
|
122 |
+
"llm": llm.to_json(),
|
123 |
+
"prompt": prompt.to_json()}
|
124 |
+
res = self.post("/assistant/save", temp_dict)
|
125 |
+
res = res.json()
|
126 |
+
if res.get("retmsg") == "success":
|
127 |
+
return Assistant(self, res["data"])
|
128 |
+
raise Exception(res["retmsg"])
|
129 |
+
|
130 |
+
def get_assistant(self, id: str = None, name: str = None) -> Assistant:
|
131 |
+
res = self.get("/assistant/get", {"id": id, "name": name})
|
132 |
+
res = res.json()
|
133 |
+
if res.get("retmsg") == "success":
|
134 |
+
return Assistant(self, res['data'])
|
135 |
+
raise Exception(res["retmsg"])
|
136 |
+
|
137 |
+
def list_assistants(self) -> List[Assistant]:
|
138 |
+
res = self.get("/assistant/list")
|
139 |
+
res = res.json()
|
140 |
+
result_list = []
|
141 |
+
if res.get("retmsg") == "success":
|
142 |
+
for data in res['data']:
|
143 |
+
result_list.append(Assistant(self, data))
|
144 |
+
return result_list
|
145 |
+
raise Exception(res["retmsg"])
|
sdk/python/test/common.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
|
2 |
|
3 |
-
API_KEY = 'ragflow-
|
4 |
HOST_ADDRESS = 'http://127.0.0.1:9380'
|
|
|
1 |
|
2 |
|
3 |
+
API_KEY = 'ragflow-k0YzUxMGY4NjY5YTExZWY5MjI5MDI0Mm'
|
4 |
HOST_ADDRESS = 'http://127.0.0.1:9380'
|
sdk/python/test/t_assistant.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ragflow import RAGFlow, Assistant
|
2 |
+
|
3 |
+
from common import API_KEY, HOST_ADDRESS
|
4 |
+
from test_sdkbase import TestSdk
|
5 |
+
|
6 |
+
|
7 |
+
class TestAssistant(TestSdk):
|
8 |
+
def test_create_assistant_with_success(self):
|
9 |
+
"""
|
10 |
+
Test creating an assistant with success
|
11 |
+
"""
|
12 |
+
rag = RAGFlow(API_KEY, HOST_ADDRESS)
|
13 |
+
kb = rag.get_dataset(name="God")
|
14 |
+
assistant = rag.create_assistant("God",knowledgebases=[kb])
|
15 |
+
if isinstance(assistant, Assistant):
|
16 |
+
assert assistant.name == "God", "Name does not match."
|
17 |
+
else:
|
18 |
+
assert False, f"Failed to create assistant, error: {assistant}"
|
19 |
+
|
20 |
+
def test_update_assistant_with_success(self):
|
21 |
+
"""
|
22 |
+
Test updating an assistant with success.
|
23 |
+
"""
|
24 |
+
rag = RAGFlow(API_KEY, HOST_ADDRESS)
|
25 |
+
kb = rag.get_dataset(name="God")
|
26 |
+
assistant = rag.create_assistant("ABC",knowledgebases=[kb])
|
27 |
+
if isinstance(assistant, Assistant):
|
28 |
+
assert assistant.name == "ABC", "Name does not match."
|
29 |
+
assistant.name = 'DEF'
|
30 |
+
res = assistant.save()
|
31 |
+
assert res is True, f"Failed to update assistant, error: {res}"
|
32 |
+
else:
|
33 |
+
assert False, f"Failed to create assistant, error: {assistant}"
|
34 |
+
|
35 |
+
def test_delete_assistant_with_success(self):
|
36 |
+
"""
|
37 |
+
Test deleting an assistant with success
|
38 |
+
"""
|
39 |
+
rag = RAGFlow(API_KEY, HOST_ADDRESS)
|
40 |
+
kb = rag.get_dataset(name="God")
|
41 |
+
assistant = rag.create_assistant("MA",knowledgebases=[kb])
|
42 |
+
if isinstance(assistant, Assistant):
|
43 |
+
assert assistant.name == "MA", "Name does not match."
|
44 |
+
res = assistant.delete()
|
45 |
+
assert res is True, f"Failed to delete assistant, error: {res}"
|
46 |
+
else:
|
47 |
+
assert False, f"Failed to create assistant, error: {assistant}"
|
48 |
+
|
49 |
+
def test_list_assistants_with_success(self):
|
50 |
+
"""
|
51 |
+
Test listing assistants with success
|
52 |
+
"""
|
53 |
+
rag = RAGFlow(API_KEY, HOST_ADDRESS)
|
54 |
+
list_assistants = rag.list_assistants()
|
55 |
+
assert len(list_assistants) > 0, "Do not exist any assistant"
|
56 |
+
for assistant in list_assistants:
|
57 |
+
assert isinstance(assistant, Assistant), "Existence type is not assistant."
|
58 |
+
|
59 |
+
def test_get_detail_assistant_with_success(self):
|
60 |
+
"""
|
61 |
+
Test getting an assistant's detail with success
|
62 |
+
"""
|
63 |
+
rag = RAGFlow(API_KEY, HOST_ADDRESS)
|
64 |
+
assistant = rag.get_assistant(name="God")
|
65 |
+
assert isinstance(assistant, Assistant), f"Failed to get assistant, error: {assistant}."
|
66 |
+
assert assistant.name == "God", "Name does not match"
|