KevinHuSh
commited on
Commit
·
73099c4
1
Parent(s):
c57f28e
support gpt-4o (#773)
Browse files### What problem does this PR solve?
#771
### Type of change
- [x] New Feature (non-breaking change which adds functionality)
- api/apps/llm_app.py +1 -1
- api/db/init_data.py +6 -0
- api/db/services/llm_service.py +1 -1
- api/settings.py +6 -0
- rag/llm/__init__.py +2 -1
- rag/svr/task_executor.py +4 -4
api/apps/llm_app.py
CHANGED
@@ -194,7 +194,7 @@ def list_app():
|
|
194 |
|
195 |
res = {}
|
196 |
for m in llms:
|
197 |
-
if model_type and m["model_type"]
|
198 |
continue
|
199 |
if m["fid"] not in res:
|
200 |
res[m["fid"]] = []
|
|
|
194 |
|
195 |
res = {}
|
196 |
for m in llms:
|
197 |
+
if model_type and m["model_type"].find(model_type)<0:
|
198 |
continue
|
199 |
if m["fid"] not in res:
|
200 |
res[m["fid"]] = []
|
api/db/init_data.py
CHANGED
@@ -143,6 +143,12 @@ def init_llm_factory():
|
|
143 |
llm_infos = [
|
144 |
# ---------------------- OpenAI ------------------------
|
145 |
{
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
"fid": factory_infos[0]["name"],
|
147 |
"llm_name": "gpt-3.5-turbo",
|
148 |
"tags": "LLM,CHAT,4K",
|
|
|
143 |
llm_infos = [
|
144 |
# ---------------------- OpenAI ------------------------
|
145 |
{
|
146 |
+
"fid": factory_infos[0]["name"],
|
147 |
+
"llm_name": "gpt-4o",
|
148 |
+
"tags": "LLM,CHAT,128K",
|
149 |
+
"max_tokens": 128000,
|
150 |
+
"model_type": LLMType.CHAT.value + "," + LLMType.IMAGE2TEXT.value
|
151 |
+
}, {
|
152 |
"fid": factory_infos[0]["name"],
|
153 |
"llm_name": "gpt-3.5-turbo",
|
154 |
"tags": "LLM,CHAT,4K",
|
api/db/services/llm_service.py
CHANGED
@@ -81,7 +81,7 @@ class TenantLLMService(CommonService):
|
|
81 |
if not model_config:
|
82 |
if llm_type == LLMType.EMBEDDING.value:
|
83 |
llm = LLMService.query(llm_name=llm_name)
|
84 |
-
if llm and llm[0].fid in ["Youdao", "FastEmbed"]:
|
85 |
model_config = {"llm_factory": llm[0].fid, "api_key":"", "llm_name": llm_name, "api_base": ""}
|
86 |
if not model_config:
|
87 |
if llm_name == "flag-embedding":
|
|
|
81 |
if not model_config:
|
82 |
if llm_type == LLMType.EMBEDDING.value:
|
83 |
llm = LLMService.query(llm_name=llm_name)
|
84 |
+
if llm and llm[0].fid in ["Youdao", "FastEmbed", "DeepSeek"]:
|
85 |
model_config = {"llm_factory": llm[0].fid, "api_key":"", "llm_name": llm_name, "api_base": ""}
|
86 |
if not model_config:
|
87 |
if llm_name == "flag-embedding":
|
api/settings.py
CHANGED
@@ -86,6 +86,12 @@ default_llm = {
|
|
86 |
"embedding_model": "",
|
87 |
"image2text_model": "",
|
88 |
"asr_model": "",
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
}
|
90 |
}
|
91 |
LLM = get_base_config("user_default_llm", {})
|
|
|
86 |
"embedding_model": "",
|
87 |
"image2text_model": "",
|
88 |
"asr_model": "",
|
89 |
+
},
|
90 |
+
"DeepSeek": {
|
91 |
+
"chat_model": "deepseek-chat",
|
92 |
+
"embedding_model": "BAAI/bge-large-zh-v1.5",
|
93 |
+
"image2text_model": "",
|
94 |
+
"asr_model": "",
|
95 |
}
|
96 |
}
|
97 |
LLM = get_base_config("user_default_llm", {})
|
rag/llm/__init__.py
CHANGED
@@ -25,7 +25,8 @@ EmbeddingModel = {
|
|
25 |
"Tongyi-Qianwen": DefaultEmbedding, #QWenEmbed,
|
26 |
"ZHIPU-AI": ZhipuEmbed,
|
27 |
"FastEmbed": FastEmbed,
|
28 |
-
"Youdao": YoudaoEmbed
|
|
|
29 |
}
|
30 |
|
31 |
|
|
|
25 |
"Tongyi-Qianwen": DefaultEmbedding, #QWenEmbed,
|
26 |
"ZHIPU-AI": ZhipuEmbed,
|
27 |
"FastEmbed": FastEmbed,
|
28 |
+
"Youdao": YoudaoEmbed,
|
29 |
+
"DeepSeek": DefaultEmbedding
|
30 |
}
|
31 |
|
32 |
|
rag/svr/task_executor.py
CHANGED
@@ -261,7 +261,7 @@ def main():
|
|
261 |
|
262 |
st = timer()
|
263 |
cks = build(r)
|
264 |
-
cron_logger.info("Build chunks({}): {}".format(r["name"], timer()-st))
|
265 |
if cks is None:
|
266 |
continue
|
267 |
if not cks:
|
@@ -279,7 +279,7 @@ def main():
|
|
279 |
callback(-1, "Embedding error:{}".format(str(e)))
|
280 |
cron_logger.error(str(e))
|
281 |
tk_count = 0
|
282 |
-
cron_logger.info("Embedding elapsed({}): {}".format(r["name"], timer()-st))
|
283 |
|
284 |
callback(msg="Finished embedding({:.2f})! Start to build index!".format(timer()-st))
|
285 |
init_kb(r)
|
@@ -291,7 +291,7 @@ def main():
|
|
291 |
if b % 128 == 0:
|
292 |
callback(prog=0.8 + 0.1 * (b + 1) / len(cks), msg="")
|
293 |
|
294 |
-
cron_logger.info("Indexing elapsed({}): {}".format(r["name"], timer()-st))
|
295 |
if es_r:
|
296 |
callback(-1, "Index failure!")
|
297 |
ELASTICSEARCH.deleteByQuery(
|
@@ -306,7 +306,7 @@ def main():
|
|
306 |
DocumentService.increment_chunk_num(
|
307 |
r["doc_id"], r["kb_id"], tk_count, chunk_count, 0)
|
308 |
cron_logger.info(
|
309 |
-
"Chunk doc({}), token({}), chunks({}), elapsed:{}".format(
|
310 |
r["id"], tk_count, len(cks), timer()-st))
|
311 |
|
312 |
|
|
|
261 |
|
262 |
st = timer()
|
263 |
cks = build(r)
|
264 |
+
cron_logger.info("Build chunks({}): {:.2f}".format(r["name"], timer()-st))
|
265 |
if cks is None:
|
266 |
continue
|
267 |
if not cks:
|
|
|
279 |
callback(-1, "Embedding error:{}".format(str(e)))
|
280 |
cron_logger.error(str(e))
|
281 |
tk_count = 0
|
282 |
+
cron_logger.info("Embedding elapsed({:.2f}): {}".format(r["name"], timer()-st))
|
283 |
|
284 |
callback(msg="Finished embedding({:.2f})! Start to build index!".format(timer()-st))
|
285 |
init_kb(r)
|
|
|
291 |
if b % 128 == 0:
|
292 |
callback(prog=0.8 + 0.1 * (b + 1) / len(cks), msg="")
|
293 |
|
294 |
+
cron_logger.info("Indexing elapsed({}): {:.2f}".format(r["name"], timer()-st))
|
295 |
if es_r:
|
296 |
callback(-1, "Index failure!")
|
297 |
ELASTICSEARCH.deleteByQuery(
|
|
|
306 |
DocumentService.increment_chunk_num(
|
307 |
r["doc_id"], r["kb_id"], tk_count, chunk_count, 0)
|
308 |
cron_logger.info(
|
309 |
+
"Chunk doc({}), token({}), chunks({}), elapsed:{:.2f}".format(
|
310 |
r["id"], tk_count, len(cks), timer()-st))
|
311 |
|
312 |
|