Add docx support for manual parser (#1227)
Browse files### What problem does this PR solve?
Add docx support for manual parser
### Type of change
- [x] New Feature (non-breaking change which adds functionality)
- rag/app/manual.py +179 -74
- rag/app/qa.py +3 -9
- rag/nlp/__init__.py +6 -0
rag/app/manual.py
CHANGED
|
@@ -18,10 +18,13 @@ import copy
|
|
| 18 |
import re
|
| 19 |
|
| 20 |
from api.db import ParserType
|
| 21 |
-
from
|
|
|
|
| 22 |
from deepdoc.parser import PdfParser, PlainParser
|
| 23 |
from rag.utils import num_tokens_from_string
|
| 24 |
-
|
|
|
|
|
|
|
| 25 |
|
| 26 |
class Pdf(PdfParser):
|
| 27 |
def __init__(self):
|
|
@@ -64,6 +67,98 @@ class Pdf(PdfParser):
|
|
| 64 |
return [(b["text"], b.get("layout_no", ""), self.get_position(b, zoomin))
|
| 65 |
for i, b in enumerate(self.boxes)], tbls
|
| 66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
def chunk(filename, binary=None, from_page=0, to_page=100000,
|
| 69 |
lang="Chinese", callback=None, **kwargs):
|
|
@@ -71,7 +166,13 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
|
|
| 71 |
Only pdf is supported.
|
| 72 |
"""
|
| 73 |
pdf_parser = None
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
if re.search(r"\.pdf$", filename, re.IGNORECASE):
|
| 76 |
pdf_parser = Pdf() if kwargs.get(
|
| 77 |
"parser_config", {}).get(
|
|
@@ -80,80 +181,84 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
|
|
| 80 |
from_page=from_page, to_page=to_page, callback=callback)
|
| 81 |
if sections and len(sections[0]) < 3:
|
| 82 |
sections = [(t, l, [[0] * 5]) for t, l in sections]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
for txt, _, _ in sections:
|
| 101 |
-
for t, lvl in pdf_parser.outlines:
|
| 102 |
-
tks = set([t[i] + t[i + 1] for i in range(len(t) - 1)])
|
| 103 |
-
tks_ = set([txt[i] + txt[i + 1]
|
| 104 |
-
for i in range(min(len(t), len(txt) - 1))])
|
| 105 |
-
if len(set(tks & tks_)) / max([len(tks), len(tks_), 1]) > 0.8:
|
| 106 |
-
levels.append(lvl)
|
| 107 |
-
break
|
| 108 |
-
else:
|
| 109 |
-
levels.append(max_lvl + 1)
|
| 110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
else:
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
assert len(sections) == len(levels)
|
| 117 |
-
sec_ids = []
|
| 118 |
-
sid = 0
|
| 119 |
-
for i, lvl in enumerate(levels):
|
| 120 |
-
if lvl <= most_level and i > 0 and lvl != levels[i - 1]:
|
| 121 |
-
sid += 1
|
| 122 |
-
sec_ids.append(sid)
|
| 123 |
-
# print(lvl, self.boxes[i]["text"], most_level, sid)
|
| 124 |
-
|
| 125 |
-
sections = [(txt, sec_ids[i], poss)
|
| 126 |
-
for i, (txt, _, poss) in enumerate(sections)]
|
| 127 |
-
for (img, rows), poss in tbls:
|
| 128 |
-
if not rows: continue
|
| 129 |
-
sections.append((rows if isinstance(rows, str) else rows[0], -1,
|
| 130 |
-
[(p[0] + 1 - from_page, p[1], p[2], p[3], p[4]) for p in poss]))
|
| 131 |
-
|
| 132 |
-
def tag(pn, left, right, top, bottom):
|
| 133 |
-
if pn + left + right + top + bottom == 0:
|
| 134 |
-
return ""
|
| 135 |
-
return "@@{}\t{:.1f}\t{:.1f}\t{:.1f}\t{:.1f}##" \
|
| 136 |
-
.format(pn, left, right, top, bottom)
|
| 137 |
-
|
| 138 |
-
chunks = []
|
| 139 |
-
last_sid = -2
|
| 140 |
-
tk_cnt = 0
|
| 141 |
-
for txt, sec_id, poss in sorted(sections, key=lambda x: (
|
| 142 |
-
x[-1][0][0], x[-1][0][3], x[-1][0][1])):
|
| 143 |
-
poss = "\t".join([tag(*pos) for pos in poss])
|
| 144 |
-
if tk_cnt < 32 or (tk_cnt < 1024 and (sec_id == last_sid or sec_id == -1)):
|
| 145 |
-
if chunks:
|
| 146 |
-
chunks[-1] += "\n" + txt + poss
|
| 147 |
-
tk_cnt += num_tokens_from_string(txt)
|
| 148 |
-
continue
|
| 149 |
-
chunks.append(txt + poss)
|
| 150 |
-
tk_cnt = num_tokens_from_string(txt)
|
| 151 |
-
if sec_id > -1:
|
| 152 |
-
last_sid = sec_id
|
| 153 |
-
|
| 154 |
-
res = tokenize_table(tbls, doc, eng)
|
| 155 |
-
res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser))
|
| 156 |
-
return res
|
| 157 |
|
| 158 |
|
| 159 |
if __name__ == "__main__":
|
|
@@ -164,4 +269,4 @@ if __name__ == "__main__":
|
|
| 164 |
pass
|
| 165 |
|
| 166 |
|
| 167 |
-
chunk(sys.argv[1], callback=dummy)
|
|
|
|
| 18 |
import re
|
| 19 |
|
| 20 |
from api.db import ParserType
|
| 21 |
+
from io import BytesIO
|
| 22 |
+
from rag.nlp import rag_tokenizer, tokenize, tokenize_table, add_positions, bullets_category, title_frequency, tokenize_chunks, docx_question_level
|
| 23 |
from deepdoc.parser import PdfParser, PlainParser
|
| 24 |
from rag.utils import num_tokens_from_string
|
| 25 |
+
from deepdoc.parser import PdfParser, ExcelParser, DocxParser
|
| 26 |
+
from docx import Document
|
| 27 |
+
from PIL import Image
|
| 28 |
|
| 29 |
class Pdf(PdfParser):
|
| 30 |
def __init__(self):
|
|
|
|
| 67 |
return [(b["text"], b.get("layout_no", ""), self.get_position(b, zoomin))
|
| 68 |
for i, b in enumerate(self.boxes)], tbls
|
| 69 |
|
| 70 |
+
class Docx(DocxParser):
|
| 71 |
+
def __init__(self):
|
| 72 |
+
pass
|
| 73 |
+
def get_picture(self, document, paragraph):
|
| 74 |
+
img = paragraph._element.xpath('.//pic:pic')
|
| 75 |
+
if not img:
|
| 76 |
+
return None
|
| 77 |
+
img = img[0]
|
| 78 |
+
embed = img.xpath('.//a:blip/@r:embed')[0]
|
| 79 |
+
related_part = document.part.related_parts[embed]
|
| 80 |
+
image = related_part.image
|
| 81 |
+
image = Image.open(BytesIO(image.blob))
|
| 82 |
+
return image
|
| 83 |
+
def concat_img(self, img1, img2):
|
| 84 |
+
if img1 and not img2:
|
| 85 |
+
return img1
|
| 86 |
+
if not img1 and img2:
|
| 87 |
+
return img2
|
| 88 |
+
if not img1 and not img2:
|
| 89 |
+
return None
|
| 90 |
+
width1, height1 = img1.size
|
| 91 |
+
width2, height2 = img2.size
|
| 92 |
+
|
| 93 |
+
new_width = max(width1, width2)
|
| 94 |
+
new_height = height1 + height2
|
| 95 |
+
new_image = Image.new('RGB', (new_width, new_height))
|
| 96 |
+
|
| 97 |
+
new_image.paste(img1, (0, 0))
|
| 98 |
+
new_image.paste(img2, (0, height1))
|
| 99 |
+
|
| 100 |
+
return new_image
|
| 101 |
+
|
| 102 |
+
def __call__(self, filename, binary=None, from_page=0, to_page=100000, callback=None):
|
| 103 |
+
self.doc = Document(
|
| 104 |
+
filename) if not binary else Document(BytesIO(binary))
|
| 105 |
+
pn = 0
|
| 106 |
+
last_answer, last_image = "", None
|
| 107 |
+
question_stack, level_stack = [], []
|
| 108 |
+
ti_list = []
|
| 109 |
+
for p in self.doc.paragraphs:
|
| 110 |
+
if pn > to_page:
|
| 111 |
+
break
|
| 112 |
+
question_level, p_text = 0, ''
|
| 113 |
+
if from_page <= pn < to_page and p.text.strip():
|
| 114 |
+
question_level, p_text = docx_question_level(p)
|
| 115 |
+
if not question_level or question_level > 6: # not a question
|
| 116 |
+
last_answer = f'{last_answer}\n{p_text}'
|
| 117 |
+
current_image = self.get_picture(self.doc, p)
|
| 118 |
+
last_image = self.concat_img(last_image, current_image)
|
| 119 |
+
else: # is a question
|
| 120 |
+
if last_answer or last_image:
|
| 121 |
+
sum_question = '\n'.join(question_stack)
|
| 122 |
+
if sum_question:
|
| 123 |
+
ti_list.append((f'{sum_question}\n{last_answer}', last_image))
|
| 124 |
+
last_answer, last_image = '', None
|
| 125 |
+
|
| 126 |
+
i = question_level
|
| 127 |
+
while question_stack and i <= level_stack[-1]:
|
| 128 |
+
question_stack.pop()
|
| 129 |
+
level_stack.pop()
|
| 130 |
+
question_stack.append(p_text)
|
| 131 |
+
level_stack.append(question_level)
|
| 132 |
+
for run in p.runs:
|
| 133 |
+
if 'lastRenderedPageBreak' in run._element.xml:
|
| 134 |
+
pn += 1
|
| 135 |
+
continue
|
| 136 |
+
if 'w:br' in run._element.xml and 'type="page"' in run._element.xml:
|
| 137 |
+
pn += 1
|
| 138 |
+
if last_answer:
|
| 139 |
+
sum_question = '\n'.join(question_stack)
|
| 140 |
+
if sum_question:
|
| 141 |
+
ti_list.append((f'{sum_question}\n{last_answer}', last_image))
|
| 142 |
+
|
| 143 |
+
tbls = []
|
| 144 |
+
for tb in self.doc.tables:
|
| 145 |
+
html= "<table>"
|
| 146 |
+
for r in tb.rows:
|
| 147 |
+
html += "<tr>"
|
| 148 |
+
i = 0
|
| 149 |
+
while i < len(r.cells):
|
| 150 |
+
span = 1
|
| 151 |
+
c = r.cells[i]
|
| 152 |
+
for j in range(i+1, len(r.cells)):
|
| 153 |
+
if c.text == r.cells[j].text:
|
| 154 |
+
span += 1
|
| 155 |
+
i = j
|
| 156 |
+
i += 1
|
| 157 |
+
html += f"<td>{c.text}</td>" if span == 1 else f"<td colspan='{span}'>{c.text}</td>"
|
| 158 |
+
html += "</tr>"
|
| 159 |
+
html += "</table>"
|
| 160 |
+
tbls.append(((None, html), ""))
|
| 161 |
+
return ti_list, tbls
|
| 162 |
|
| 163 |
def chunk(filename, binary=None, from_page=0, to_page=100000,
|
| 164 |
lang="Chinese", callback=None, **kwargs):
|
|
|
|
| 166 |
Only pdf is supported.
|
| 167 |
"""
|
| 168 |
pdf_parser = None
|
| 169 |
+
doc = {
|
| 170 |
+
"docnm_kwd": filename
|
| 171 |
+
}
|
| 172 |
+
doc["title_tks"] = rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", doc["docnm_kwd"]))
|
| 173 |
+
doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
|
| 174 |
+
# is it English
|
| 175 |
+
eng = lang.lower() == "english" # pdf_parser.is_english
|
| 176 |
if re.search(r"\.pdf$", filename, re.IGNORECASE):
|
| 177 |
pdf_parser = Pdf() if kwargs.get(
|
| 178 |
"parser_config", {}).get(
|
|
|
|
| 181 |
from_page=from_page, to_page=to_page, callback=callback)
|
| 182 |
if sections and len(sections[0]) < 3:
|
| 183 |
sections = [(t, l, [[0] * 5]) for t, l in sections]
|
| 184 |
+
# set pivot using the most frequent type of title,
|
| 185 |
+
# then merge between 2 pivot
|
| 186 |
+
if len(sections) > 0 and len(pdf_parser.outlines) / len(sections) > 0.1:
|
| 187 |
+
max_lvl = max([lvl for _, lvl in pdf_parser.outlines])
|
| 188 |
+
most_level = max(0, max_lvl - 1)
|
| 189 |
+
levels = []
|
| 190 |
+
for txt, _, _ in sections:
|
| 191 |
+
for t, lvl in pdf_parser.outlines:
|
| 192 |
+
tks = set([t[i] + t[i + 1] for i in range(len(t) - 1)])
|
| 193 |
+
tks_ = set([txt[i] + txt[i + 1]
|
| 194 |
+
for i in range(min(len(t), len(txt) - 1))])
|
| 195 |
+
if len(set(tks & tks_)) / max([len(tks), len(tks_), 1]) > 0.8:
|
| 196 |
+
levels.append(lvl)
|
| 197 |
+
break
|
| 198 |
+
else:
|
| 199 |
+
levels.append(max_lvl + 1)
|
| 200 |
|
| 201 |
+
else:
|
| 202 |
+
bull = bullets_category([txt for txt, _, _ in sections])
|
| 203 |
+
most_level, levels = title_frequency(
|
| 204 |
+
bull, [(txt, l) for txt, l, poss in sections])
|
| 205 |
+
|
| 206 |
+
assert len(sections) == len(levels)
|
| 207 |
+
sec_ids = []
|
| 208 |
+
sid = 0
|
| 209 |
+
for i, lvl in enumerate(levels):
|
| 210 |
+
if lvl <= most_level and i > 0 and lvl != levels[i - 1]:
|
| 211 |
+
sid += 1
|
| 212 |
+
sec_ids.append(sid)
|
| 213 |
+
# print(lvl, self.boxes[i]["text"], most_level, sid)
|
| 214 |
|
| 215 |
+
sections = [(txt, sec_ids[i], poss)
|
| 216 |
+
for i, (txt, _, poss) in enumerate(sections)]
|
| 217 |
+
for (img, rows), poss in tbls:
|
| 218 |
+
if not rows: continue
|
| 219 |
+
sections.append((rows if isinstance(rows, str) else rows[0], -1,
|
| 220 |
+
[(p[0] + 1 - from_page, p[1], p[2], p[3], p[4]) for p in poss]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
|
| 222 |
+
def tag(pn, left, right, top, bottom):
|
| 223 |
+
if pn + left + right + top + bottom == 0:
|
| 224 |
+
return ""
|
| 225 |
+
return "@@{}\t{:.1f}\t{:.1f}\t{:.1f}\t{:.1f}##" \
|
| 226 |
+
.format(pn, left, right, top, bottom)
|
| 227 |
+
|
| 228 |
+
chunks = []
|
| 229 |
+
last_sid = -2
|
| 230 |
+
tk_cnt = 0
|
| 231 |
+
for txt, sec_id, poss in sorted(sections, key=lambda x: (
|
| 232 |
+
x[-1][0][0], x[-1][0][3], x[-1][0][1])):
|
| 233 |
+
poss = "\t".join([tag(*pos) for pos in poss])
|
| 234 |
+
if tk_cnt < 32 or (tk_cnt < 1024 and (sec_id == last_sid or sec_id == -1)):
|
| 235 |
+
if chunks:
|
| 236 |
+
chunks[-1] += "\n" + txt + poss
|
| 237 |
+
tk_cnt += num_tokens_from_string(txt)
|
| 238 |
+
continue
|
| 239 |
+
chunks.append(txt + poss)
|
| 240 |
+
tk_cnt = num_tokens_from_string(txt)
|
| 241 |
+
if sec_id > -1:
|
| 242 |
+
last_sid = sec_id
|
| 243 |
+
|
| 244 |
+
res = tokenize_table(tbls, doc, eng)
|
| 245 |
+
res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser))
|
| 246 |
+
return res
|
| 247 |
+
if re.search(r"\.docx$", filename, re.IGNORECASE):
|
| 248 |
+
docx_parser = Docx()
|
| 249 |
+
ti_list, tbls = docx_parser(filename, binary,
|
| 250 |
+
from_page=0, to_page=10000, callback=callback)
|
| 251 |
+
res = tokenize_table(tbls, doc, eng)
|
| 252 |
+
for text, image in ti_list:
|
| 253 |
+
d = copy.deepcopy(doc)
|
| 254 |
+
d['image'] = image
|
| 255 |
+
tokenize(d, text, eng)
|
| 256 |
+
res.append(d)
|
| 257 |
+
return res
|
| 258 |
else:
|
| 259 |
+
raise NotImplementedError("file type not supported yet(pdf and docx supported)")
|
| 260 |
+
|
| 261 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
|
| 263 |
|
| 264 |
if __name__ == "__main__":
|
|
|
|
| 269 |
pass
|
| 270 |
|
| 271 |
|
| 272 |
+
chunk(sys.argv[1], callback=dummy)
|
rag/app/qa.py
CHANGED
|
@@ -16,7 +16,7 @@ from io import BytesIO
|
|
| 16 |
from timeit import default_timer as timer
|
| 17 |
from nltk import word_tokenize
|
| 18 |
from openpyxl import load_workbook
|
| 19 |
-
from rag.nlp import is_english, random_choices, find_codec, qbullets_category, add_positions, has_qbullet
|
| 20 |
from rag.nlp import rag_tokenizer, tokenize_table
|
| 21 |
from rag.settings import cron_logger
|
| 22 |
from deepdoc.parser import PdfParser, ExcelParser, DocxParser
|
|
@@ -165,7 +165,7 @@ class Docx(DocxParser):
|
|
| 165 |
break
|
| 166 |
question_level, p_text = 0, ''
|
| 167 |
if from_page <= pn < to_page and p.text.strip():
|
| 168 |
-
question_level, p_text =
|
| 169 |
if not question_level or question_level > 6: # not a question
|
| 170 |
last_answer = f'{last_answer}\n{p_text}'
|
| 171 |
current_image = self.get_picture(self.doc, p)
|
|
@@ -254,12 +254,6 @@ def mdQuestionLevel(s):
|
|
| 254 |
match = re.match(r'#*', s)
|
| 255 |
return (len(match.group(0)), s.lstrip('#').lstrip()) if match else (0, s)
|
| 256 |
|
| 257 |
-
def docxQuestionLevel(p):
|
| 258 |
-
if p.style.name.startswith('Heading'):
|
| 259 |
-
return int(p.style.name.split(' ')[-1]), re.sub(r"\u3000", " ", p.text).strip()
|
| 260 |
-
else:
|
| 261 |
-
return 0, re.sub(r"\u3000", " ", p.text).strip()
|
| 262 |
-
|
| 263 |
def chunk(filename, binary=None, lang="Chinese", callback=None, **kwargs):
|
| 264 |
"""
|
| 265 |
Excel and csv(txt) format files are supported.
|
|
@@ -405,4 +399,4 @@ if __name__ == "__main__":
|
|
| 405 |
|
| 406 |
def dummy(prog=None, msg=""):
|
| 407 |
pass
|
| 408 |
-
chunk(sys.argv[1], from_page=0, to_page=10, callback=dummy)
|
|
|
|
| 16 |
from timeit import default_timer as timer
|
| 17 |
from nltk import word_tokenize
|
| 18 |
from openpyxl import load_workbook
|
| 19 |
+
from rag.nlp import is_english, random_choices, find_codec, qbullets_category, add_positions, has_qbullet, docx_question_level
|
| 20 |
from rag.nlp import rag_tokenizer, tokenize_table
|
| 21 |
from rag.settings import cron_logger
|
| 22 |
from deepdoc.parser import PdfParser, ExcelParser, DocxParser
|
|
|
|
| 165 |
break
|
| 166 |
question_level, p_text = 0, ''
|
| 167 |
if from_page <= pn < to_page and p.text.strip():
|
| 168 |
+
question_level, p_text = docx_question_level(p)
|
| 169 |
if not question_level or question_level > 6: # not a question
|
| 170 |
last_answer = f'{last_answer}\n{p_text}'
|
| 171 |
current_image = self.get_picture(self.doc, p)
|
|
|
|
| 254 |
match = re.match(r'#*', s)
|
| 255 |
return (len(match.group(0)), s.lstrip('#').lstrip()) if match else (0, s)
|
| 256 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 257 |
def chunk(filename, binary=None, lang="Chinese", callback=None, **kwargs):
|
| 258 |
"""
|
| 259 |
Excel and csv(txt) format files are supported.
|
|
|
|
| 399 |
|
| 400 |
def dummy(prog=None, msg=""):
|
| 401 |
pass
|
| 402 |
+
chunk(sys.argv[1], from_page=0, to_page=10, callback=dummy)
|
rag/nlp/__init__.py
CHANGED
|
@@ -497,3 +497,9 @@ def naive_merge(sections, chunk_token_num=128, delimiter="\n。;!?"):
|
|
| 497 |
add_chunk(sec[s: e], pos)
|
| 498 |
|
| 499 |
return cks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 497 |
add_chunk(sec[s: e], pos)
|
| 498 |
|
| 499 |
return cks
|
| 500 |
+
|
| 501 |
+
def docx_question_level(p):
|
| 502 |
+
if p.style.name.startswith('Heading'):
|
| 503 |
+
return int(p.style.name.split(' ')[-1]), re.sub(r"\u3000", " ", p.text).strip()
|
| 504 |
+
else:
|
| 505 |
+
return 0, re.sub(r"\u3000", " ", p.text).strip()
|