Feature/feat1017 (#2872)
Browse files### What problem does this PR solve?
1. fix: mid map show error in knowledge graph, juse because
```@antv/g6```version changed
2. feat: concurrent threads configuration support in graph extractor
3. fix: used tokens update failed for tenant
4. feat: timeout configuration support for llm
5. fix: regex error in graph extractor
6. feat: qwen rerank(```gte-rerank```) support
7. fix: timeout deal in knowledge graph index process. Now chat by
stream output, also, it is configuratable.
8. feat: ```qwen-long``` model configuration
### Type of change
- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
---------
Co-authored-by: chongchuanbing <[email protected]>
Co-authored-by: Kevin Hu <[email protected]>
- api/db/services/llm_service.py +12 -10
- conf/llm_factories.json +13 -1
- graphrag/graph_extractor.py +1 -0
- graphrag/index.py +3 -1
- graphrag/mind_map_extractor.py +3 -1
- rag/llm/__init__.py +2 -1
- rag/llm/chat_model.py +37 -21
- rag/llm/rerank_model.py +24 -0
|
@@ -167,11 +167,13 @@ class TenantLLMService(CommonService):
|
|
| 167 |
else:
|
| 168 |
assert False, "LLM type error"
|
| 169 |
|
|
|
|
|
|
|
| 170 |
num = 0
|
| 171 |
try:
|
| 172 |
-
for u in cls.query(tenant_id=tenant_id, llm_name=
|
| 173 |
num += cls.model.update(used_tokens=u.used_tokens + used_tokens)\
|
| 174 |
-
.where(cls.model.tenant_id == tenant_id, cls.model.llm_name ==
|
| 175 |
.execute()
|
| 176 |
except Exception as e:
|
| 177 |
pass
|
|
@@ -207,7 +209,7 @@ class LLMBundle(object):
|
|
| 207 |
if not TenantLLMService.increase_usage(
|
| 208 |
self.tenant_id, self.llm_type, used_tokens):
|
| 209 |
database_logger.error(
|
| 210 |
-
"Can't update token usage for {}/EMBEDDING".format(self.tenant_id))
|
| 211 |
return emd, used_tokens
|
| 212 |
|
| 213 |
def encode_queries(self, query: str):
|
|
@@ -215,7 +217,7 @@ class LLMBundle(object):
|
|
| 215 |
if not TenantLLMService.increase_usage(
|
| 216 |
self.tenant_id, self.llm_type, used_tokens):
|
| 217 |
database_logger.error(
|
| 218 |
-
"Can't update token usage for {}/EMBEDDING".format(self.tenant_id))
|
| 219 |
return emd, used_tokens
|
| 220 |
|
| 221 |
def similarity(self, query: str, texts: list):
|
|
@@ -223,7 +225,7 @@ class LLMBundle(object):
|
|
| 223 |
if not TenantLLMService.increase_usage(
|
| 224 |
self.tenant_id, self.llm_type, used_tokens):
|
| 225 |
database_logger.error(
|
| 226 |
-
"Can't update token usage for {}/RERANK".format(self.tenant_id))
|
| 227 |
return sim, used_tokens
|
| 228 |
|
| 229 |
def describe(self, image, max_tokens=300):
|
|
@@ -231,7 +233,7 @@ class LLMBundle(object):
|
|
| 231 |
if not TenantLLMService.increase_usage(
|
| 232 |
self.tenant_id, self.llm_type, used_tokens):
|
| 233 |
database_logger.error(
|
| 234 |
-
"Can't update token usage for {}/IMAGE2TEXT".format(self.tenant_id))
|
| 235 |
return txt
|
| 236 |
|
| 237 |
def transcription(self, audio):
|
|
@@ -239,7 +241,7 @@ class LLMBundle(object):
|
|
| 239 |
if not TenantLLMService.increase_usage(
|
| 240 |
self.tenant_id, self.llm_type, used_tokens):
|
| 241 |
database_logger.error(
|
| 242 |
-
"Can't update token usage for {}/SEQUENCE2TXT".format(self.tenant_id))
|
| 243 |
return txt
|
| 244 |
|
| 245 |
def tts(self, text):
|
|
@@ -254,10 +256,10 @@ class LLMBundle(object):
|
|
| 254 |
|
| 255 |
def chat(self, system, history, gen_conf):
|
| 256 |
txt, used_tokens = self.mdl.chat(system, history, gen_conf)
|
| 257 |
-
if not TenantLLMService.increase_usage(
|
| 258 |
self.tenant_id, self.llm_type, used_tokens, self.llm_name):
|
| 259 |
database_logger.error(
|
| 260 |
-
"Can't update token usage for {}/CHAT".format(self.tenant_id))
|
| 261 |
return txt
|
| 262 |
|
| 263 |
def chat_streamly(self, system, history, gen_conf):
|
|
@@ -266,6 +268,6 @@ class LLMBundle(object):
|
|
| 266 |
if not TenantLLMService.increase_usage(
|
| 267 |
self.tenant_id, self.llm_type, txt, self.llm_name):
|
| 268 |
database_logger.error(
|
| 269 |
-
"Can't update token usage for {}/CHAT".format(self.tenant_id))
|
| 270 |
return
|
| 271 |
yield txt
|
|
|
|
| 167 |
else:
|
| 168 |
assert False, "LLM type error"
|
| 169 |
|
| 170 |
+
llm_name = mdlnm.split("@")[0] if "@" in mdlnm else mdlnm
|
| 171 |
+
|
| 172 |
num = 0
|
| 173 |
try:
|
| 174 |
+
for u in cls.query(tenant_id=tenant_id, llm_name=llm_name):
|
| 175 |
num += cls.model.update(used_tokens=u.used_tokens + used_tokens)\
|
| 176 |
+
.where(cls.model.tenant_id == tenant_id, cls.model.llm_name == llm_name)\
|
| 177 |
.execute()
|
| 178 |
except Exception as e:
|
| 179 |
pass
|
|
|
|
| 209 |
if not TenantLLMService.increase_usage(
|
| 210 |
self.tenant_id, self.llm_type, used_tokens):
|
| 211 |
database_logger.error(
|
| 212 |
+
"Can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens))
|
| 213 |
return emd, used_tokens
|
| 214 |
|
| 215 |
def encode_queries(self, query: str):
|
|
|
|
| 217 |
if not TenantLLMService.increase_usage(
|
| 218 |
self.tenant_id, self.llm_type, used_tokens):
|
| 219 |
database_logger.error(
|
| 220 |
+
"Can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens))
|
| 221 |
return emd, used_tokens
|
| 222 |
|
| 223 |
def similarity(self, query: str, texts: list):
|
|
|
|
| 225 |
if not TenantLLMService.increase_usage(
|
| 226 |
self.tenant_id, self.llm_type, used_tokens):
|
| 227 |
database_logger.error(
|
| 228 |
+
"Can't update token usage for {}/RERANK used_tokens: {}".format(self.tenant_id, used_tokens))
|
| 229 |
return sim, used_tokens
|
| 230 |
|
| 231 |
def describe(self, image, max_tokens=300):
|
|
|
|
| 233 |
if not TenantLLMService.increase_usage(
|
| 234 |
self.tenant_id, self.llm_type, used_tokens):
|
| 235 |
database_logger.error(
|
| 236 |
+
"Can't update token usage for {}/IMAGE2TEXT used_tokens: {}".format(self.tenant_id, used_tokens))
|
| 237 |
return txt
|
| 238 |
|
| 239 |
def transcription(self, audio):
|
|
|
|
| 241 |
if not TenantLLMService.increase_usage(
|
| 242 |
self.tenant_id, self.llm_type, used_tokens):
|
| 243 |
database_logger.error(
|
| 244 |
+
"Can't update token usage for {}/SEQUENCE2TXT used_tokens: {}".format(self.tenant_id, used_tokens))
|
| 245 |
return txt
|
| 246 |
|
| 247 |
def tts(self, text):
|
|
|
|
| 256 |
|
| 257 |
def chat(self, system, history, gen_conf):
|
| 258 |
txt, used_tokens = self.mdl.chat(system, history, gen_conf)
|
| 259 |
+
if isinstance(txt, int) and not TenantLLMService.increase_usage(
|
| 260 |
self.tenant_id, self.llm_type, used_tokens, self.llm_name):
|
| 261 |
database_logger.error(
|
| 262 |
+
"Can't update token usage for {}/CHAT llm_name: {}, used_tokens: {}".format(self.tenant_id, self.llm_name, used_tokens))
|
| 263 |
return txt
|
| 264 |
|
| 265 |
def chat_streamly(self, system, history, gen_conf):
|
|
|
|
| 268 |
if not TenantLLMService.increase_usage(
|
| 269 |
self.tenant_id, self.llm_type, txt, self.llm_name):
|
| 270 |
database_logger.error(
|
| 271 |
+
"Can't update token usage for {}/CHAT llm_name: {}, content: {}".format(self.tenant_id, self.llm_name, txt))
|
| 272 |
return
|
| 273 |
yield txt
|
|
@@ -89,9 +89,15 @@
|
|
| 89 |
{
|
| 90 |
"name": "Tongyi-Qianwen",
|
| 91 |
"logo": "",
|
| 92 |
-
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
|
| 93 |
"status": "1",
|
| 94 |
"llm": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
{
|
| 96 |
"llm_name": "qwen-turbo",
|
| 97 |
"tags": "LLM,CHAT,8K",
|
|
@@ -139,6 +145,12 @@
|
|
| 139 |
"tags": "LLM,CHAT,IMAGE2TEXT",
|
| 140 |
"max_tokens": 765,
|
| 141 |
"model_type": "image2text"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
}
|
| 143 |
]
|
| 144 |
},
|
|
|
|
| 89 |
{
|
| 90 |
"name": "Tongyi-Qianwen",
|
| 91 |
"logo": "",
|
| 92 |
+
"tags": "LLM,TEXT EMBEDDING,TEXT RE-RANK,SPEECH2TEXT,MODERATION",
|
| 93 |
"status": "1",
|
| 94 |
"llm": [
|
| 95 |
+
{
|
| 96 |
+
"llm_name": "qwen-long",
|
| 97 |
+
"tags": "LLM,CHAT,10000K",
|
| 98 |
+
"max_tokens": 1000000,
|
| 99 |
+
"model_type": "chat"
|
| 100 |
+
},
|
| 101 |
{
|
| 102 |
"llm_name": "qwen-turbo",
|
| 103 |
"tags": "LLM,CHAT,8K",
|
|
|
|
| 145 |
"tags": "LLM,CHAT,IMAGE2TEXT",
|
| 146 |
"max_tokens": 765,
|
| 147 |
"model_type": "image2text"
|
| 148 |
+
},
|
| 149 |
+
{
|
| 150 |
+
"llm_name": "gte-rerank",
|
| 151 |
+
"tags": "RE-RANK,4k",
|
| 152 |
+
"max_tokens": 4000,
|
| 153 |
+
"model_type": "rerank"
|
| 154 |
}
|
| 155 |
]
|
| 156 |
},
|
|
@@ -164,6 +164,7 @@ class GraphExtractor:
|
|
| 164 |
text = perform_variable_replacements(self._extraction_prompt, variables=variables)
|
| 165 |
gen_conf = {"temperature": 0.3}
|
| 166 |
response = self._llm.chat(text, [{"role": "user", "content": "Output:"}], gen_conf)
|
|
|
|
| 167 |
token_count = num_tokens_from_string(text + response)
|
| 168 |
|
| 169 |
results = response or ""
|
|
|
|
| 164 |
text = perform_variable_replacements(self._extraction_prompt, variables=variables)
|
| 165 |
gen_conf = {"temperature": 0.3}
|
| 166 |
response = self._llm.chat(text, [{"role": "user", "content": "Output:"}], gen_conf)
|
| 167 |
+
if response.find("**ERROR**") >= 0: raise Exception(response)
|
| 168 |
token_count = num_tokens_from_string(text + response)
|
| 169 |
|
| 170 |
results = response or ""
|
|
@@ -13,6 +13,7 @@
|
|
| 13 |
# See the License for the specific language governing permissions and
|
| 14 |
# limitations under the License.
|
| 15 |
#
|
|
|
|
| 16 |
from concurrent.futures import ThreadPoolExecutor
|
| 17 |
import json
|
| 18 |
from functools import reduce
|
|
@@ -64,7 +65,8 @@ def build_knowledge_graph_chunks(tenant_id: str, chunks: List[str], callback, en
|
|
| 64 |
texts, graphs = [], []
|
| 65 |
cnt = 0
|
| 66 |
threads = []
|
| 67 |
-
|
|
|
|
| 68 |
for i in range(len(chunks)):
|
| 69 |
tkn_cnt = num_tokens_from_string(chunks[i])
|
| 70 |
if cnt+tkn_cnt >= left_token_count and texts:
|
|
|
|
| 13 |
# See the License for the specific language governing permissions and
|
| 14 |
# limitations under the License.
|
| 15 |
#
|
| 16 |
+
import os
|
| 17 |
from concurrent.futures import ThreadPoolExecutor
|
| 18 |
import json
|
| 19 |
from functools import reduce
|
|
|
|
| 65 |
texts, graphs = [], []
|
| 66 |
cnt = 0
|
| 67 |
threads = []
|
| 68 |
+
max_workers = int(os.environ.get('GRAPH_EXTRACTOR_MAX_WORKERS', 50))
|
| 69 |
+
exe = ThreadPoolExecutor(max_workers=max_workers)
|
| 70 |
for i in range(len(chunks)):
|
| 71 |
tkn_cnt = num_tokens_from_string(chunks[i])
|
| 72 |
if cnt+tkn_cnt >= left_token_count and texts:
|
|
@@ -16,6 +16,7 @@
|
|
| 16 |
|
| 17 |
import collections
|
| 18 |
import logging
|
|
|
|
| 19 |
import re
|
| 20 |
import logging
|
| 21 |
import traceback
|
|
@@ -89,7 +90,8 @@ class MindMapExtractor:
|
|
| 89 |
prompt_variables = {}
|
| 90 |
|
| 91 |
try:
|
| 92 |
-
|
|
|
|
| 93 |
threads = []
|
| 94 |
token_count = max(self._llm.max_length * 0.8, self._llm.max_length-512)
|
| 95 |
texts = []
|
|
|
|
| 16 |
|
| 17 |
import collections
|
| 18 |
import logging
|
| 19 |
+
import os
|
| 20 |
import re
|
| 21 |
import logging
|
| 22 |
import traceback
|
|
|
|
| 90 |
prompt_variables = {}
|
| 91 |
|
| 92 |
try:
|
| 93 |
+
max_workers = int(os.environ.get('MINDMAP_EXTRACTOR_MAX_WORKERS', 12))
|
| 94 |
+
exe = ThreadPoolExecutor(max_workers=max_workers)
|
| 95 |
threads = []
|
| 96 |
token_count = max(self._llm.max_length * 0.8, self._llm.max_length-512)
|
| 97 |
texts = []
|
|
@@ -122,7 +122,8 @@ RerankModel = {
|
|
| 122 |
"TogetherAI": TogetherAIRerank,
|
| 123 |
"SILICONFLOW": SILICONFLOWRerank,
|
| 124 |
"BaiduYiyan": BaiduYiyanRerank,
|
| 125 |
-
"Voyage AI": VoyageRerank
|
|
|
|
| 126 |
}
|
| 127 |
|
| 128 |
Seq2txtModel = {
|
|
|
|
| 122 |
"TogetherAI": TogetherAIRerank,
|
| 123 |
"SILICONFLOW": SILICONFLOWRerank,
|
| 124 |
"BaiduYiyan": BaiduYiyanRerank,
|
| 125 |
+
"Voyage AI": VoyageRerank,
|
| 126 |
+
"Tongyi-Qianwen": QWenRerank,
|
| 127 |
}
|
| 128 |
|
| 129 |
Seq2txtModel = {
|
|
@@ -31,7 +31,8 @@ import asyncio
|
|
| 31 |
|
| 32 |
class Base(ABC):
|
| 33 |
def __init__(self, key, model_name, base_url):
|
| 34 |
-
|
|
|
|
| 35 |
self.model_name = model_name
|
| 36 |
|
| 37 |
def chat(self, system, history, gen_conf):
|
|
@@ -216,28 +217,39 @@ class QWenChat(Base):
|
|
| 216 |
self.model_name = model_name
|
| 217 |
|
| 218 |
def chat(self, system, history, gen_conf):
|
| 219 |
-
|
| 220 |
-
if
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
messages=history,
|
| 225 |
-
result_format='message',
|
| 226 |
-
**gen_conf
|
| 227 |
-
)
|
| 228 |
-
ans = ""
|
| 229 |
-
tk_count = 0
|
| 230 |
-
if response.status_code == HTTPStatus.OK:
|
| 231 |
-
ans += response.output.choices[0]['message']['content']
|
| 232 |
-
tk_count += response.usage.total_tokens
|
| 233 |
-
if response.output.choices[0].get("finish_reason", "") == "length":
|
| 234 |
-
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
|
| 235 |
-
[ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
|
| 236 |
-
return ans, tk_count
|
| 237 |
|
| 238 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
|
| 240 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
from http import HTTPStatus
|
| 242 |
if system:
|
| 243 |
history.insert(0, {"role": "system", "content": system})
|
|
@@ -249,6 +261,7 @@ class QWenChat(Base):
|
|
| 249 |
messages=history,
|
| 250 |
result_format='message',
|
| 251 |
stream=True,
|
|
|
|
| 252 |
**gen_conf
|
| 253 |
)
|
| 254 |
for resp in response:
|
|
@@ -267,6 +280,9 @@ class QWenChat(Base):
|
|
| 267 |
|
| 268 |
yield tk_count
|
| 269 |
|
|
|
|
|
|
|
|
|
|
| 270 |
|
| 271 |
class ZhipuChat(Base):
|
| 272 |
def __init__(self, key, model_name="glm-3-turbo", **kwargs):
|
|
|
|
| 31 |
|
| 32 |
class Base(ABC):
|
| 33 |
def __init__(self, key, model_name, base_url):
|
| 34 |
+
timeout = int(os.environ.get('LM_TIMEOUT_SECONDS', 600))
|
| 35 |
+
self.client = OpenAI(api_key=key, base_url=base_url, timeout=timeout)
|
| 36 |
self.model_name = model_name
|
| 37 |
|
| 38 |
def chat(self, system, history, gen_conf):
|
|
|
|
| 217 |
self.model_name = model_name
|
| 218 |
|
| 219 |
def chat(self, system, history, gen_conf):
|
| 220 |
+
stream_flag = str(os.environ.get('QWEN_CHAT_BY_STREAM', 'true')).lower() == 'true'
|
| 221 |
+
if not stream_flag:
|
| 222 |
+
from http import HTTPStatus
|
| 223 |
+
if system:
|
| 224 |
+
history.insert(0, {"role": "system", "content": system})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
|
| 226 |
+
response = Generation.call(
|
| 227 |
+
self.model_name,
|
| 228 |
+
messages=history,
|
| 229 |
+
result_format='message',
|
| 230 |
+
**gen_conf
|
| 231 |
+
)
|
| 232 |
+
ans = ""
|
| 233 |
+
tk_count = 0
|
| 234 |
+
if response.status_code == HTTPStatus.OK:
|
| 235 |
+
ans += response.output.choices[0]['message']['content']
|
| 236 |
+
tk_count += response.usage.total_tokens
|
| 237 |
+
if response.output.choices[0].get("finish_reason", "") == "length":
|
| 238 |
+
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
|
| 239 |
+
[ans]) else "路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵"
|
| 240 |
+
return ans, tk_count
|
| 241 |
|
| 242 |
+
return "**ERROR**: " + response.message, tk_count
|
| 243 |
+
else:
|
| 244 |
+
g = self._chat_streamly(system, history, gen_conf, incremental_output=True)
|
| 245 |
+
result_list = list(g)
|
| 246 |
+
error_msg_list = [item for item in result_list if str(item).find("**ERROR**") >= 0]
|
| 247 |
+
if len(error_msg_list) > 0:
|
| 248 |
+
return "**ERROR**: " + "".join(error_msg_list) , 0
|
| 249 |
+
else:
|
| 250 |
+
return "".join(result_list[:-1]), result_list[-1]
|
| 251 |
+
|
| 252 |
+
def _chat_streamly(self, system, history, gen_conf, incremental_output=False):
|
| 253 |
from http import HTTPStatus
|
| 254 |
if system:
|
| 255 |
history.insert(0, {"role": "system", "content": system})
|
|
|
|
| 261 |
messages=history,
|
| 262 |
result_format='message',
|
| 263 |
stream=True,
|
| 264 |
+
incremental_output=incremental_output,
|
| 265 |
**gen_conf
|
| 266 |
)
|
| 267 |
for resp in response:
|
|
|
|
| 280 |
|
| 281 |
yield tk_count
|
| 282 |
|
| 283 |
+
def chat_streamly(self, system, history, gen_conf):
|
| 284 |
+
return self._chat_streamly(system, history, gen_conf)
|
| 285 |
+
|
| 286 |
|
| 287 |
class ZhipuChat(Base):
|
| 288 |
def __init__(self, key, model_name="glm-3-turbo", **kwargs):
|
|
@@ -390,3 +390,27 @@ class VoyageRerank(Base):
|
|
| 390 |
for r in res.results:
|
| 391 |
rank[r.index] = r.relevance_score
|
| 392 |
return rank, res.total_tokens
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 390 |
for r in res.results:
|
| 391 |
rank[r.index] = r.relevance_score
|
| 392 |
return rank, res.total_tokens
|
| 393 |
+
|
| 394 |
+
class QWenRerank(Base):
|
| 395 |
+
def __init__(self, key, model_name='gte-rerank', base_url=None, **kwargs):
|
| 396 |
+
import dashscope
|
| 397 |
+
self.api_key = key
|
| 398 |
+
self.model_name = dashscope.TextReRank.Models.gte_rerank if model_name is None else model_name
|
| 399 |
+
|
| 400 |
+
def similarity(self, query: str, texts: list):
|
| 401 |
+
import dashscope
|
| 402 |
+
from http import HTTPStatus
|
| 403 |
+
resp = dashscope.TextReRank.call(
|
| 404 |
+
api_key=self.api_key,
|
| 405 |
+
model=self.model_name,
|
| 406 |
+
query=query,
|
| 407 |
+
documents=texts,
|
| 408 |
+
top_n=len(texts),
|
| 409 |
+
return_documents=False
|
| 410 |
+
)
|
| 411 |
+
rank = np.zeros(len(texts), dtype=float)
|
| 412 |
+
if resp.status_code == HTTPStatus.OK:
|
| 413 |
+
for r in resp.output.results:
|
| 414 |
+
rank[r.index] = r.relevance_score
|
| 415 |
+
return rank, resp.usage.total_tokens
|
| 416 |
+
return rank, 0
|