KevinHuSh
commited on
Commit
·
bcb7249
1
Parent(s):
f422a06
solve task execution issues (#90)
Browse files- api/apps/document_app.py +14 -7
- api/db/services/task_service.py +1 -1
- api/settings.py +9 -9
- deepdoc/parser/pdf_parser.py +22 -5
- deepdoc/vision/layout_recognizer.py +1 -1
- deepdoc/vision/table_structure_recognizer.py +1 -1
- rag/app/book.py +8 -17
- rag/app/manual.py +2 -13
- rag/app/naive.py +3 -12
- rag/app/paper.py +2 -13
- rag/app/presentation.py +1 -1
- rag/app/resume.py +1 -1
- rag/nlp/__init__.py +19 -3
- rag/nlp/search.py +3 -1
- rag/svr/task_broker.py +1 -1
- rag/svr/task_executor.py +1 -1
api/apps/document_app.py
CHANGED
@@ -236,13 +236,16 @@ def run():
|
|
236 |
try:
|
237 |
for id in req["doc_ids"]:
|
238 |
info = {"run": str(req["run"]), "progress": 0}
|
239 |
-
if str(req["run"]) == TaskStatus.RUNNING.value:
|
|
|
|
|
|
|
240 |
DocumentService.update_by_id(id, info)
|
241 |
-
if str(req["run"]) == TaskStatus.CANCEL.value:
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
|
247 |
return get_json_result(data=True)
|
248 |
except Exception as e:
|
@@ -311,13 +314,17 @@ def change_parser():
|
|
311 |
if doc.type == FileType.VISUAL or re.search(r"\.(ppt|pptx|pages)$", doc.name):
|
312 |
return get_data_error_result(retmsg="Not supported yet!")
|
313 |
|
314 |
-
e = DocumentService.update_by_id(doc.id, {"parser_id": req["parser_id"], "progress":0, "progress_msg": ""})
|
315 |
if not e:
|
316 |
return get_data_error_result(retmsg="Document not found!")
|
317 |
if doc.token_num>0:
|
318 |
e = DocumentService.increment_chunk_num(doc.id, doc.kb_id, doc.token_num*-1, doc.chunk_num*-1, doc.process_duation*-1)
|
319 |
if not e:
|
320 |
return get_data_error_result(retmsg="Document not found!")
|
|
|
|
|
|
|
|
|
321 |
|
322 |
return get_json_result(data=True)
|
323 |
except Exception as e:
|
|
|
236 |
try:
|
237 |
for id in req["doc_ids"]:
|
238 |
info = {"run": str(req["run"]), "progress": 0}
|
239 |
+
if str(req["run"]) == TaskStatus.RUNNING.value:
|
240 |
+
info["progress_msg"] = ""
|
241 |
+
info["chunk_num"] = 0
|
242 |
+
info["token_num"] = 0
|
243 |
DocumentService.update_by_id(id, info)
|
244 |
+
#if str(req["run"]) == TaskStatus.CANCEL.value:
|
245 |
+
tenant_id = DocumentService.get_tenant_id(id)
|
246 |
+
if not tenant_id:
|
247 |
+
return get_data_error_result(retmsg="Tenant not found!")
|
248 |
+
ELASTICSEARCH.deleteByQuery(Q("match", doc_id=id), idxnm=search.index_name(tenant_id))
|
249 |
|
250 |
return get_json_result(data=True)
|
251 |
except Exception as e:
|
|
|
314 |
if doc.type == FileType.VISUAL or re.search(r"\.(ppt|pptx|pages)$", doc.name):
|
315 |
return get_data_error_result(retmsg="Not supported yet!")
|
316 |
|
317 |
+
e = DocumentService.update_by_id(doc.id, {"parser_id": req["parser_id"], "progress":0, "progress_msg": "", "run": "0"})
|
318 |
if not e:
|
319 |
return get_data_error_result(retmsg="Document not found!")
|
320 |
if doc.token_num>0:
|
321 |
e = DocumentService.increment_chunk_num(doc.id, doc.kb_id, doc.token_num*-1, doc.chunk_num*-1, doc.process_duation*-1)
|
322 |
if not e:
|
323 |
return get_data_error_result(retmsg="Document not found!")
|
324 |
+
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
|
325 |
+
if not tenant_id:
|
326 |
+
return get_data_error_result(retmsg="Tenant not found!")
|
327 |
+
ELASTICSEARCH.deleteByQuery(Q("match", doc_id=doc.id), idxnm=search.index_name(tenant_id))
|
328 |
|
329 |
return get_json_result(data=True)
|
330 |
except Exception as e:
|
api/db/services/task_service.py
CHANGED
@@ -65,7 +65,7 @@ class TaskService(CommonService):
|
|
65 |
try:
|
66 |
task = cls.model.get_by_id(id)
|
67 |
_, doc = DocumentService.get_by_id(task.doc_id)
|
68 |
-
return doc.run == TaskStatus.CANCEL.value
|
69 |
except Exception as e:
|
70 |
pass
|
71 |
return True
|
|
|
65 |
try:
|
66 |
task = cls.model.get_by_id(id)
|
67 |
_, doc = DocumentService.get_by_id(task.doc_id)
|
68 |
+
return doc.run == TaskStatus.CANCEL.value or doc.progress < 0
|
69 |
except Exception as e:
|
70 |
pass
|
71 |
return True
|
api/settings.py
CHANGED
@@ -98,15 +98,6 @@ PROXY_PROTOCOL = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("protocol")
|
|
98 |
|
99 |
DATABASE = decrypt_database_config(name="mysql")
|
100 |
|
101 |
-
# Logger
|
102 |
-
LoggerFactory.set_directory(os.path.join(get_project_base_directory(), "logs", "api"))
|
103 |
-
# {CRITICAL: 50, FATAL:50, ERROR:40, WARNING:30, WARN:30, INFO:20, DEBUG:10, NOTSET:0}
|
104 |
-
LoggerFactory.LEVEL = 10
|
105 |
-
|
106 |
-
stat_logger = getLogger("stat")
|
107 |
-
access_logger = getLogger("access")
|
108 |
-
database_logger = getLogger("database")
|
109 |
-
|
110 |
# Switch
|
111 |
# upload
|
112 |
UPLOAD_DATA_FROM_CLIENT = True
|
@@ -144,6 +135,15 @@ CHECK_NODES_IDENTITY = False
|
|
144 |
|
145 |
retrievaler = search.Dealer(ELASTICSEARCH)
|
146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
class CustomEnum(Enum):
|
148 |
@classmethod
|
149 |
def valid(cls, value):
|
|
|
98 |
|
99 |
DATABASE = decrypt_database_config(name="mysql")
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
# Switch
|
102 |
# upload
|
103 |
UPLOAD_DATA_FROM_CLIENT = True
|
|
|
135 |
|
136 |
retrievaler = search.Dealer(ELASTICSEARCH)
|
137 |
|
138 |
+
# Logger
|
139 |
+
LoggerFactory.set_directory(os.path.join(get_project_base_directory(), "logs", "api"))
|
140 |
+
# {CRITICAL: 50, FATAL:50, ERROR:40, WARNING:30, WARN:30, INFO:20, DEBUG:10, NOTSET:0}
|
141 |
+
LoggerFactory.LEVEL = 10
|
142 |
+
|
143 |
+
stat_logger = getLogger("stat")
|
144 |
+
access_logger = getLogger("access")
|
145 |
+
database_logger = getLogger("database")
|
146 |
+
|
147 |
class CustomEnum(Enum):
|
148 |
@classmethod
|
149 |
def valid(cls, value):
|
deepdoc/parser/pdf_parser.py
CHANGED
@@ -8,7 +8,7 @@ import torch
|
|
8 |
import re
|
9 |
import pdfplumber
|
10 |
import logging
|
11 |
-
from PIL import Image
|
12 |
import numpy as np
|
13 |
|
14 |
from api.db import ParserType
|
@@ -930,13 +930,25 @@ class HuParser:
|
|
930 |
|
931 |
def crop(self, text, ZM=3):
|
932 |
imgs = []
|
|
|
933 |
for tag in re.findall(r"@@[0-9-]+\t[0-9.\t]+##", text):
|
934 |
pn, left, right, top, bottom = tag.strip(
|
935 |
"#").strip("@").split("\t")
|
936 |
left, right, top, bottom = float(left), float(
|
937 |
right), float(top), float(bottom)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
938 |
bottom *= ZM
|
939 |
-
pns = [int(p) - 1 for p in pn.split("-")]
|
940 |
for pn in pns[1:]:
|
941 |
bottom += self.page_images[pn - 1].size[1]
|
942 |
imgs.append(
|
@@ -959,16 +971,21 @@ class HuParser:
|
|
959 |
|
960 |
if not imgs:
|
961 |
return
|
962 |
-
GAP = 2
|
963 |
height = 0
|
964 |
for img in imgs:
|
965 |
height += img.size[1] + GAP
|
966 |
height = int(height)
|
|
|
967 |
pic = Image.new("RGB",
|
968 |
-
(
|
969 |
(245, 245, 245))
|
970 |
height = 0
|
971 |
-
for img in imgs:
|
|
|
|
|
|
|
|
|
|
|
972 |
pic.paste(img, (0, int(height)))
|
973 |
height += img.size[1] + GAP
|
974 |
return pic
|
|
|
8 |
import re
|
9 |
import pdfplumber
|
10 |
import logging
|
11 |
+
from PIL import Image, ImageDraw
|
12 |
import numpy as np
|
13 |
|
14 |
from api.db import ParserType
|
|
|
930 |
|
931 |
def crop(self, text, ZM=3):
|
932 |
imgs = []
|
933 |
+
poss = []
|
934 |
for tag in re.findall(r"@@[0-9-]+\t[0-9.\t]+##", text):
|
935 |
pn, left, right, top, bottom = tag.strip(
|
936 |
"#").strip("@").split("\t")
|
937 |
left, right, top, bottom = float(left), float(
|
938 |
right), float(top), float(bottom)
|
939 |
+
poss.append(([int(p) - 1 for p in pn.split("-")], left, right, top, bottom))
|
940 |
+
if not poss: return
|
941 |
+
|
942 |
+
max_width = np.max([right-left for (_, left, right, _, _) in poss])
|
943 |
+
GAP = 6
|
944 |
+
pos = poss[0]
|
945 |
+
poss.insert(0, ([pos[0][0]], pos[1], pos[2], max(0, pos[3]-120), max(pos[3]-GAP, 0)))
|
946 |
+
pos = poss[-1]
|
947 |
+
poss.append(([pos[0][-1]], pos[1], pos[2], min(self.page_images[pos[0][-1]].size[1]/ZM, pos[4]+GAP), min(self.page_images[pos[0][-1]].size[1]/ZM, pos[4]+120)))
|
948 |
+
|
949 |
+
for ii, (pns, left, right, top, bottom) in enumerate(poss):
|
950 |
+
right = left + max_width
|
951 |
bottom *= ZM
|
|
|
952 |
for pn in pns[1:]:
|
953 |
bottom += self.page_images[pn - 1].size[1]
|
954 |
imgs.append(
|
|
|
971 |
|
972 |
if not imgs:
|
973 |
return
|
|
|
974 |
height = 0
|
975 |
for img in imgs:
|
976 |
height += img.size[1] + GAP
|
977 |
height = int(height)
|
978 |
+
width = int(np.max([i.size[0] for i in imgs]))
|
979 |
pic = Image.new("RGB",
|
980 |
+
(width, height),
|
981 |
(245, 245, 245))
|
982 |
height = 0
|
983 |
+
for ii, img in enumerate(imgs):
|
984 |
+
if ii == 0 or ii + 1 == len(imgs):
|
985 |
+
img = img.convert('RGBA')
|
986 |
+
overlay = Image.new('RGBA', img.size, (0, 0, 0, 0))
|
987 |
+
overlay.putalpha(128)
|
988 |
+
img = Image.alpha_composite(img, overlay).convert("RGB")
|
989 |
pic.paste(img, (0, int(height)))
|
990 |
height += img.size[1] + GAP
|
991 |
return pic
|
deepdoc/vision/layout_recognizer.py
CHANGED
@@ -34,7 +34,7 @@ class LayoutRecognizer(Recognizer):
|
|
34 |
"Equation",
|
35 |
]
|
36 |
def __init__(self, domain):
|
37 |
-
super().__init__(self.labels, domain
|
38 |
|
39 |
def __call__(self, image_list, ocr_res, scale_factor=3, thr=0.2, batch_size=16):
|
40 |
def __is_garbage(b):
|
|
|
34 |
"Equation",
|
35 |
]
|
36 |
def __init__(self, domain):
|
37 |
+
super().__init__(self.labels, domain, os.path.join(get_project_base_directory(), "rag/res/deepdoc/"))
|
38 |
|
39 |
def __call__(self, image_list, ocr_res, scale_factor=3, thr=0.2, batch_size=16):
|
40 |
def __is_garbage(b):
|
deepdoc/vision/table_structure_recognizer.py
CHANGED
@@ -33,7 +33,7 @@ class TableStructureRecognizer(Recognizer):
|
|
33 |
]
|
34 |
|
35 |
def __init__(self):
|
36 |
-
super().__init__(self.labels, "tsr"
|
37 |
|
38 |
def __call__(self, images, thr=0.2):
|
39 |
tbls = super().__call__(images, thr)
|
|
|
33 |
]
|
34 |
|
35 |
def __init__(self):
|
36 |
+
super().__init__(self.labels, "tsr",os.path.join(get_project_base_directory(), "rag/res/deepdoc/"))
|
37 |
|
38 |
def __call__(self, images, thr=0.2):
|
39 |
tbls = super().__call__(images, thr)
|
rag/app/book.py
CHANGED
@@ -13,7 +13,7 @@
|
|
13 |
import copy
|
14 |
import re
|
15 |
from rag.nlp import bullets_category, is_english, tokenize, remove_contents_table, \
|
16 |
-
hierarchical_merge, make_colon_as_title, naive_merge, random_choices
|
17 |
from rag.nlp import huqie
|
18 |
from deepdoc.parser import PdfParser, DocxParser
|
19 |
|
@@ -90,25 +90,16 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
|
|
90 |
make_colon_as_title(sections)
|
91 |
bull = bullets_category([t for t in random_choices([t for t,_ in sections], k=100)])
|
92 |
if bull >= 0: cks = hierarchical_merge(bull, sections, 3)
|
93 |
-
else:
|
|
|
|
|
|
|
94 |
|
95 |
-
sections = [t for t, _ in sections]
|
96 |
# is it English
|
97 |
-
eng = lang.lower() == "english"#is_english(random_choices(sections, k=218))
|
|
|
|
|
98 |
|
99 |
-
res = []
|
100 |
-
# add tables
|
101 |
-
for img, rows in tbls:
|
102 |
-
bs = 10
|
103 |
-
de = ";" if eng else ";"
|
104 |
-
for i in range(0, len(rows), bs):
|
105 |
-
d = copy.deepcopy(doc)
|
106 |
-
r = de.join(rows[i:i + bs])
|
107 |
-
r = re.sub(r"\t——(来自| in ).*”%s" % de, "", r)
|
108 |
-
tokenize(d, r, eng)
|
109 |
-
d["image"] = img
|
110 |
-
res.append(d)
|
111 |
-
print("TABLE", d["content_with_weight"])
|
112 |
# wrap up to es documents
|
113 |
for ck in cks:
|
114 |
d = copy.deepcopy(doc)
|
|
|
13 |
import copy
|
14 |
import re
|
15 |
from rag.nlp import bullets_category, is_english, tokenize, remove_contents_table, \
|
16 |
+
hierarchical_merge, make_colon_as_title, naive_merge, random_choices, tokenize_table
|
17 |
from rag.nlp import huqie
|
18 |
from deepdoc.parser import PdfParser, DocxParser
|
19 |
|
|
|
90 |
make_colon_as_title(sections)
|
91 |
bull = bullets_category([t for t in random_choices([t for t,_ in sections], k=100)])
|
92 |
if bull >= 0: cks = hierarchical_merge(bull, sections, 3)
|
93 |
+
else:
|
94 |
+
sections = [s.split("@") for s in sections]
|
95 |
+
sections = [(pr[0], "@"+pr[1]) for pr in sections if len(pr)==2]
|
96 |
+
cks = naive_merge(sections, kwargs.get("chunk_token_num", 256), kwargs.get("delimer", "\n。;!?"))
|
97 |
|
|
|
98 |
# is it English
|
99 |
+
eng = lang.lower() == "english"#is_english(random_choices([t for t, _ in sections], k=218))
|
100 |
+
|
101 |
+
res = tokenize_table(tbls, doc, eng)
|
102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
# wrap up to es documents
|
104 |
for ck in cks:
|
105 |
d = copy.deepcopy(doc)
|
rag/app/manual.py
CHANGED
@@ -2,7 +2,7 @@ import copy
|
|
2 |
import re
|
3 |
|
4 |
from api.db import ParserType
|
5 |
-
from rag.nlp import huqie, tokenize
|
6 |
from deepdoc.parser import PdfParser
|
7 |
from rag.utils import num_tokens_from_string
|
8 |
|
@@ -81,18 +81,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
|
|
81 |
# is it English
|
82 |
eng = lang.lower() == "english"#pdf_parser.is_english
|
83 |
|
84 |
-
res =
|
85 |
-
# add tables
|
86 |
-
for img, rows in tbls:
|
87 |
-
bs = 10
|
88 |
-
de = ";" if eng else ";"
|
89 |
-
for i in range(0, len(rows), bs):
|
90 |
-
d = copy.deepcopy(doc)
|
91 |
-
r = de.join(rows[i:i + bs])
|
92 |
-
r = re.sub(r"\t——(来自| in ).*”%s" % de, "", r)
|
93 |
-
tokenize(d, r, eng)
|
94 |
-
d["image"] = img
|
95 |
-
res.append(d)
|
96 |
|
97 |
i = 0
|
98 |
chunk = []
|
|
|
2 |
import re
|
3 |
|
4 |
from api.db import ParserType
|
5 |
+
from rag.nlp import huqie, tokenize, tokenize_table
|
6 |
from deepdoc.parser import PdfParser
|
7 |
from rag.utils import num_tokens_from_string
|
8 |
|
|
|
81 |
# is it English
|
82 |
eng = lang.lower() == "english"#pdf_parser.is_english
|
83 |
|
84 |
+
res = tokenize_table(tbls, doc, eng)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
i = 0
|
87 |
chunk = []
|
rag/app/naive.py
CHANGED
@@ -13,7 +13,7 @@
|
|
13 |
import copy
|
14 |
import re
|
15 |
from rag.app import laws
|
16 |
-
from rag.nlp import huqie, is_english, tokenize, naive_merge
|
17 |
from deepdoc.parser import PdfParser
|
18 |
from rag.settings import cron_logger
|
19 |
|
@@ -72,17 +72,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
|
|
72 |
pdf_parser = Pdf()
|
73 |
sections, tbls = pdf_parser(filename if not binary else binary,
|
74 |
from_page=from_page, to_page=to_page, callback=callback)
|
75 |
-
|
76 |
-
for img, rows in tbls:
|
77 |
-
bs = 10
|
78 |
-
de = ";" if eng else ";"
|
79 |
-
for i in range(0, len(rows), bs):
|
80 |
-
d = copy.deepcopy(doc)
|
81 |
-
r = de.join(rows[i:i + bs])
|
82 |
-
r = re.sub(r"\t——(来自| in ).*”%s" % de, "", r)
|
83 |
-
tokenize(d, r, eng)
|
84 |
-
d["image"] = img
|
85 |
-
res.append(d)
|
86 |
elif re.search(r"\.txt$", filename, re.IGNORECASE):
|
87 |
callback(0.1, "Start to parse.")
|
88 |
txt = ""
|
@@ -106,6 +96,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
|
|
106 |
# wrap up to es documents
|
107 |
for ck in cks:
|
108 |
print("--", ck)
|
|
|
109 |
d = copy.deepcopy(doc)
|
110 |
if pdf_parser:
|
111 |
d["image"] = pdf_parser.crop(ck)
|
|
|
13 |
import copy
|
14 |
import re
|
15 |
from rag.app import laws
|
16 |
+
from rag.nlp import huqie, is_english, tokenize, naive_merge, tokenize_table
|
17 |
from deepdoc.parser import PdfParser
|
18 |
from rag.settings import cron_logger
|
19 |
|
|
|
72 |
pdf_parser = Pdf()
|
73 |
sections, tbls = pdf_parser(filename if not binary else binary,
|
74 |
from_page=from_page, to_page=to_page, callback=callback)
|
75 |
+
res = tokenize_table(tbls, doc, eng)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
elif re.search(r"\.txt$", filename, re.IGNORECASE):
|
77 |
callback(0.1, "Start to parse.")
|
78 |
txt = ""
|
|
|
96 |
# wrap up to es documents
|
97 |
for ck in cks:
|
98 |
print("--", ck)
|
99 |
+
if not ck:continue
|
100 |
d = copy.deepcopy(doc)
|
101 |
if pdf_parser:
|
102 |
d["image"] = pdf_parser.crop(ck)
|
rag/app/paper.py
CHANGED
@@ -15,7 +15,7 @@ import re
|
|
15 |
from collections import Counter
|
16 |
|
17 |
from api.db import ParserType
|
18 |
-
from rag.nlp import huqie, tokenize
|
19 |
from deepdoc.parser import PdfParser
|
20 |
import numpy as np
|
21 |
from rag.utils import num_tokens_from_string
|
@@ -158,18 +158,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", ca
|
|
158 |
eng = lang.lower() == "english"#pdf_parser.is_english
|
159 |
print("It's English.....", eng)
|
160 |
|
161 |
-
res = []
|
162 |
-
# add tables
|
163 |
-
for img, rows in paper["tables"]:
|
164 |
-
bs = 10
|
165 |
-
de = ";" if eng else ";"
|
166 |
-
for i in range(0, len(rows), bs):
|
167 |
-
d = copy.deepcopy(doc)
|
168 |
-
r = de.join(rows[i:i + bs])
|
169 |
-
r = re.sub(r"\t——(来自| in ).*”%s" % de, "", r)
|
170 |
-
tokenize(d, r)
|
171 |
-
d["image"] = img
|
172 |
-
res.append(d)
|
173 |
|
174 |
if paper["abstract"]:
|
175 |
d = copy.deepcopy(doc)
|
|
|
15 |
from collections import Counter
|
16 |
|
17 |
from api.db import ParserType
|
18 |
+
from rag.nlp import huqie, tokenize, tokenize_table
|
19 |
from deepdoc.parser import PdfParser
|
20 |
import numpy as np
|
21 |
from rag.utils import num_tokens_from_string
|
|
|
158 |
eng = lang.lower() == "english"#pdf_parser.is_english
|
159 |
print("It's English.....", eng)
|
160 |
|
161 |
+
res = tokenize_table(paper["tables"], doc, eng)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
if paper["abstract"]:
|
164 |
d = copy.deepcopy(doc)
|
rag/app/presentation.py
CHANGED
@@ -20,7 +20,7 @@ from deepdoc.parser import PdfParser, PptParser
|
|
20 |
|
21 |
class Ppt(PptParser):
|
22 |
def __call__(self, fnm, from_page, to_page, callback=None):
|
23 |
-
txts = super.__call__(fnm, from_page, to_page)
|
24 |
|
25 |
callback(0.5, "Text extraction finished.")
|
26 |
import aspose.slides as slides
|
|
|
20 |
|
21 |
class Ppt(PptParser):
|
22 |
def __call__(self, fnm, from_page, to_page, callback=None):
|
23 |
+
txts = super().__call__(fnm, from_page, to_page)
|
24 |
|
25 |
callback(0.5, "Text extraction finished.")
|
26 |
import aspose.slides as slides
|
rag/app/resume.py
CHANGED
@@ -79,7 +79,7 @@ def chunk(filename, binary=None, callback=None, **kwargs):
|
|
79 |
resume = remote_call(filename, binary)
|
80 |
if len(resume.keys()) < 7:
|
81 |
callback(-1, "Resume is not successfully parsed.")
|
82 |
-
|
83 |
callback(0.6, "Done parsing. Chunking...")
|
84 |
print(json.dumps(resume, ensure_ascii=False, indent=2))
|
85 |
|
|
|
79 |
resume = remote_call(filename, binary)
|
80 |
if len(resume.keys()) < 7:
|
81 |
callback(-1, "Resume is not successfully parsed.")
|
82 |
+
raise Exception("Resume parser remote call fail!")
|
83 |
callback(0.6, "Done parsing. Chunking...")
|
84 |
print(json.dumps(resume, ensure_ascii=False, indent=2))
|
85 |
|
rag/nlp/__init__.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
|
2 |
|
3 |
from nltk.stem import PorterStemmer
|
4 |
stemmer = PorterStemmer()
|
@@ -80,6 +80,20 @@ def tokenize(d, t, eng):
|
|
80 |
d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
|
81 |
|
82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
def remove_contents_table(sections, eng=False):
|
84 |
i = 0
|
85 |
while i < len(sections):
|
@@ -201,10 +215,12 @@ def naive_merge(sections, chunk_token_num=128, delimiter="\n。;!?"):
|
|
201 |
tnum = num_tokens_from_string(t)
|
202 |
if tnum < 8: pos = ""
|
203 |
if tk_nums[-1] > chunk_token_num:
|
204 |
-
|
|
|
205 |
tk_nums.append(tnum)
|
206 |
else:
|
207 |
-
cks[-1]
|
|
|
208 |
tk_nums[-1] += tnum
|
209 |
|
210 |
for sec, pos in sections:
|
|
|
1 |
+
import copy
|
2 |
|
3 |
from nltk.stem import PorterStemmer
|
4 |
stemmer = PorterStemmer()
|
|
|
80 |
d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
|
81 |
|
82 |
|
83 |
+
def tokenize_table(tbls, doc, eng, batch_size=10):
|
84 |
+
res = []
|
85 |
+
# add tables
|
86 |
+
for img, rows in tbls:
|
87 |
+
de = "; " if eng else "; "
|
88 |
+
for i in range(0, len(rows), batch_size):
|
89 |
+
d = copy.deepcopy(doc)
|
90 |
+
r = de.join(rows[i:i + batch_size])
|
91 |
+
tokenize(d, r, eng)
|
92 |
+
d["image"] = img
|
93 |
+
res.append(d)
|
94 |
+
return res
|
95 |
+
|
96 |
+
|
97 |
def remove_contents_table(sections, eng=False):
|
98 |
i = 0
|
99 |
while i < len(sections):
|
|
|
215 |
tnum = num_tokens_from_string(t)
|
216 |
if tnum < 8: pos = ""
|
217 |
if tk_nums[-1] > chunk_token_num:
|
218 |
+
if t.find(pos) < 0: t += pos
|
219 |
+
cks.append(t)
|
220 |
tk_nums.append(tnum)
|
221 |
else:
|
222 |
+
if cks[-1].find(pos) < 0: t += pos
|
223 |
+
cks[-1] += t
|
224 |
tk_nums[-1] += tnum
|
225 |
|
226 |
for sec, pos in sections:
|
rag/nlp/search.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
# -*- coding: utf-8 -*-
|
2 |
import json
|
3 |
import re
|
|
|
|
|
4 |
from elasticsearch_dsl import Q, Search
|
5 |
from typing import List, Optional, Dict, Union
|
6 |
from dataclasses import dataclass
|
@@ -98,7 +100,7 @@ class Dealer:
|
|
98 |
del s["highlight"]
|
99 |
q_vec = s["knn"]["query_vector"]
|
100 |
es_logger.info("【Q】: {}".format(json.dumps(s)))
|
101 |
-
res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src)
|
102 |
es_logger.info("TOTAL: {}".format(self.es.getTotal(res)))
|
103 |
if self.es.getTotal(res) == 0 and "knn" in s:
|
104 |
bqry, _ = self.qryr.question(qst, min_match="10%")
|
|
|
1 |
# -*- coding: utf-8 -*-
|
2 |
import json
|
3 |
import re
|
4 |
+
from copy import deepcopy
|
5 |
+
|
6 |
from elasticsearch_dsl import Q, Search
|
7 |
from typing import List, Optional, Dict, Union
|
8 |
from dataclasses import dataclass
|
|
|
100 |
del s["highlight"]
|
101 |
q_vec = s["knn"]["query_vector"]
|
102 |
es_logger.info("【Q】: {}".format(json.dumps(s)))
|
103 |
+
res = self.es.search(deepcopy(s), idxnm=idxnm, timeout="600s", src=src)
|
104 |
es_logger.info("TOTAL: {}".format(self.es.getTotal(res)))
|
105 |
if self.es.getTotal(res) == 0 and "knn" in s:
|
106 |
bqry, _ = self.qryr.question(qst, min_match="10%")
|
rag/svr/task_broker.py
CHANGED
@@ -90,7 +90,7 @@ def dispatch():
|
|
90 |
tsks.append(task)
|
91 |
else:
|
92 |
tsks.append(new_task())
|
93 |
-
|
94 |
bulk_insert_into_db(Task, tsks, True)
|
95 |
set_dispatching(r["id"])
|
96 |
tmf.write(str(r["update_time"]) + "\n")
|
|
|
90 |
tsks.append(task)
|
91 |
else:
|
92 |
tsks.append(new_task())
|
93 |
+
|
94 |
bulk_insert_into_db(Task, tsks, True)
|
95 |
set_dispatching(r["id"])
|
96 |
tmf.write(str(r["update_time"]) + "\n")
|
rag/svr/task_executor.py
CHANGED
@@ -114,7 +114,7 @@ def build(row):
|
|
114 |
kb_id=row["kb_id"], parser_config=row["parser_config"], tenant_id=row["tenant_id"])
|
115 |
except Exception as e:
|
116 |
if re.search("(No such file|not found)", str(e)):
|
117 |
-
callback(-1, "Can not find file <%s>" % row["
|
118 |
else:
|
119 |
callback(-1, f"Internal server error: %s" %
|
120 |
str(e).replace("'", ""))
|
|
|
114 |
kb_id=row["kb_id"], parser_config=row["parser_config"], tenant_id=row["tenant_id"])
|
115 |
except Exception as e:
|
116 |
if re.search("(No such file|not found)", str(e)):
|
117 |
+
callback(-1, "Can not find file <%s>" % row["name"])
|
118 |
else:
|
119 |
callback(-1, f"Internal server error: %s" %
|
120 |
str(e).replace("'", ""))
|