jinhai-2012 commited on
Commit
cd389b1
·
1 Parent(s): 6bcc79d

Update version info to v0.14.1 (#3720)

Browse files

### What problem does this PR solve?

Update version info to v0.14.1

### Type of change

- [x] Documentation Update

---------

Signed-off-by: jinhai <[email protected]>

README.md CHANGED
@@ -20,7 +20,7 @@
20
  <img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
21
  </a>
22
  <a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
23
- <img src="https://img.shields.io/badge/docker_pull-ragflow:v0.14.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.14.0">
24
  </a>
25
  <a href="https://github.com/infiniflow/ragflow/releases/latest">
26
  <img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@@ -176,14 +176,14 @@ releases! 🌟
176
  ```
177
 
178
  > - To download a RAGFlow slim Docker image of a specific version, update the `RAGFLOW_IMAGE` variable in *
179
- *docker/.env** to your desired version. For example, `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.0-slim`. After
180
  making this change, rerun the command above to initiate the download.
181
  > - To download the dev version of RAGFlow Docker image *including* embedding models and Python libraries, update the
182
  `RAGFLOW_IMAGE` variable in **docker/.env** to `RAGFLOW_IMAGE=infiniflow/ragflow:dev`. After making this change,
183
  rerun the command above to initiate the download.
184
  > - To download a specific version of RAGFlow Docker image *including* embedding models and Python libraries, update
185
  the `RAGFLOW_IMAGE` variable in **docker/.env** to your desired version. For example,
186
- `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.0`. After making this change, rerun the command above to initiate the
187
  download.
188
 
189
  > **NOTE:** A RAGFlow Docker image that includes embedding models and Python libraries is approximately 9GB in size
 
20
  <img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
21
  </a>
22
  <a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
23
+ <img src="https://img.shields.io/badge/docker_pull-ragflow:v0.14.1-brightgreen" alt="docker pull infiniflow/ragflow:v0.14.1">
24
  </a>
25
  <a href="https://github.com/infiniflow/ragflow/releases/latest">
26
  <img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
 
176
  ```
177
 
178
  > - To download a RAGFlow slim Docker image of a specific version, update the `RAGFLOW_IMAGE` variable in *
179
+ *docker/.env** to your desired version. For example, `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.1-slim`. After
180
  making this change, rerun the command above to initiate the download.
181
  > - To download the dev version of RAGFlow Docker image *including* embedding models and Python libraries, update the
182
  `RAGFLOW_IMAGE` variable in **docker/.env** to `RAGFLOW_IMAGE=infiniflow/ragflow:dev`. After making this change,
183
  rerun the command above to initiate the download.
184
  > - To download a specific version of RAGFlow Docker image *including* embedding models and Python libraries, update
185
  the `RAGFLOW_IMAGE` variable in **docker/.env** to your desired version. For example,
186
+ `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.1`. After making this change, rerun the command above to initiate the
187
  download.
188
 
189
  > **NOTE:** A RAGFlow Docker image that includes embedding models and Python libraries is approximately 9GB in size
README_id.md CHANGED
@@ -20,7 +20,7 @@
20
  <img alt="Lencana Daring" src="https://img.shields.io/badge/Online-Demo-4e6b99">
21
  </a>
22
  <a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
23
- <img src="https://img.shields.io/badge/docker_pull-ragflow:v0.14.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.14.0">
24
  </a>
25
  <a href="https://github.com/infiniflow/ragflow/releases/latest">
26
  <img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Rilis%20Terbaru" alt="Rilis Terbaru">
@@ -169,14 +169,14 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
169
  ```
170
 
171
  > - Untuk mengunduh versi tertentu dari image Docker RAGFlow slim, perbarui variabel `RAGFlow_IMAGE` di *
172
- *docker/.env** sesuai dengan versi yang diinginkan. Misalnya, `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.0-slim`.
173
  Setelah mengubah ini, jalankan ulang perintah di atas untuk memulai unduhan.
174
  > - Untuk mengunduh versi dev dari image Docker RAGFlow *termasuk* model embedding dan library Python, perbarui
175
  variabel `RAGFlow_IMAGE` di **docker/.env** menjadi `RAGFLOW_IMAGE=infiniflow/ragflow:dev`. Setelah mengubah ini,
176
  jalankan ulang perintah di atas untuk memulai unduhan.
177
  > - Untuk mengunduh versi tertentu dari image Docker RAGFlow *termasuk* model embedding dan library Python, perbarui
178
  variabel `RAGFlow_IMAGE` di **docker/.env** sesuai dengan versi yang diinginkan. Misalnya,
179
- `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.0`. Setelah mengubah ini, jalankan ulang perintah di atas untuk memulai unduhan.
180
 
181
  > **CATATAN:** Image Docker RAGFlow yang mencakup model embedding dan library Python berukuran sekitar 9GB
182
  dan mungkin memerlukan waktu lebih lama untuk dimuat.
 
20
  <img alt="Lencana Daring" src="https://img.shields.io/badge/Online-Demo-4e6b99">
21
  </a>
22
  <a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
23
+ <img src="https://img.shields.io/badge/docker_pull-ragflow:v0.14.1-brightgreen" alt="docker pull infiniflow/ragflow:v0.14.1">
24
  </a>
25
  <a href="https://github.com/infiniflow/ragflow/releases/latest">
26
  <img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Rilis%20Terbaru" alt="Rilis Terbaru">
 
169
  ```
170
 
171
  > - Untuk mengunduh versi tertentu dari image Docker RAGFlow slim, perbarui variabel `RAGFlow_IMAGE` di *
172
+ *docker/.env** sesuai dengan versi yang diinginkan. Misalnya, `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.1-slim`.
173
  Setelah mengubah ini, jalankan ulang perintah di atas untuk memulai unduhan.
174
  > - Untuk mengunduh versi dev dari image Docker RAGFlow *termasuk* model embedding dan library Python, perbarui
175
  variabel `RAGFlow_IMAGE` di **docker/.env** menjadi `RAGFLOW_IMAGE=infiniflow/ragflow:dev`. Setelah mengubah ini,
176
  jalankan ulang perintah di atas untuk memulai unduhan.
177
  > - Untuk mengunduh versi tertentu dari image Docker RAGFlow *termasuk* model embedding dan library Python, perbarui
178
  variabel `RAGFlow_IMAGE` di **docker/.env** sesuai dengan versi yang diinginkan. Misalnya,
179
+ `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.1`. Setelah mengubah ini, jalankan ulang perintah di atas untuk memulai unduhan.
180
 
181
  > **CATATAN:** Image Docker RAGFlow yang mencakup model embedding dan library Python berukuran sekitar 9GB
182
  dan mungkin memerlukan waktu lebih lama untuk dimuat.
README_ja.md CHANGED
@@ -20,7 +20,7 @@
20
  <img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
21
  </a>
22
  <a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
23
- <img src="https://img.shields.io/badge/docker_pull-ragflow:v0.14.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.14.0">
24
  </a>
25
  <a href="https://github.com/infiniflow/ragflow/releases/latest">
26
  <img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@@ -148,9 +148,9 @@
148
  $ docker compose -f docker-compose.yml up -d
149
  ```
150
 
151
- > - 特定のバージョンのRAGFlow slim Dockerイメージをダウンロードするには、**docker/.env**内の`RAGFlow_IMAGE`変数を希望のバージョンに更新します。例えば、`RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.0`とします。この変更を行った後、上記のコマンドを再実行してダウンロードを開始してください。
152
  > - RAGFlowの埋め込みモデルとPythonライブラリを含む開発版Dockerイメージをダウンロードするには、**docker/.env**内の`RAGFlow_IMAGE`変数を`RAGFLOW_IMAGE=infiniflow/ragflow:dev`に更新します。この変更を行った後、上記のコマンドを再実行してダウンロードを開始してください。
153
- > - 特定のバージョンのRAGFlow Dockerイメージ(埋め込みモデルとPythonライブラリを含む)をダウンロードするには、**docker/.env**内の`RAGFlow_IMAGE`変数を希望のバージョンに更新します。例えば、`RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.0`とします。この変更を行った後、上記のコマンドを再実行してダウンロードを開始してください。
154
 
155
  > **NOTE:** 埋め込みモデルとPythonライブラリを含むRAGFlow Dockerイメージのサイズは約9GBであり、読み込みにかなりの時間がかかる場合があります。
156
 
 
20
  <img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
21
  </a>
22
  <a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
23
+ <img src="https://img.shields.io/badge/docker_pull-ragflow:v0.14.1-brightgreen" alt="docker pull infiniflow/ragflow:v0.14.1">
24
  </a>
25
  <a href="https://github.com/infiniflow/ragflow/releases/latest">
26
  <img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
 
148
  $ docker compose -f docker-compose.yml up -d
149
  ```
150
 
151
+ > - 特定のバージョンのRAGFlow slim Dockerイメージをダウンロードするには、**docker/.env**内の`RAGFlow_IMAGE`変数を希望のバージョンに更新します。例えば、`RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.1`とします。この変更を行った後、上記のコマンドを再実行してダウンロードを開始してください。
152
  > - RAGFlowの埋め込みモデルとPythonライブラリを含む開発版Dockerイメージをダウンロードするには、**docker/.env**内の`RAGFlow_IMAGE`変数を`RAGFLOW_IMAGE=infiniflow/ragflow:dev`に更新します。この変更を行った後、上記のコマンドを再実行してダウンロードを開始してください。
153
+ > - 特定のバージョンのRAGFlow Dockerイメージ(埋め込みモデルとPythonライブラリを含む)をダウンロードするには、**docker/.env**内の`RAGFlow_IMAGE`変数を希望のバージョンに更新します。例えば、`RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.1`とします。この変更を行った後、上記のコマンドを再実行してダウンロードを開始してください。
154
 
155
  > **NOTE:** 埋め込みモデルとPythonライブラリを含むRAGFlow Dockerイメージのサイズは約9GBであり、読み込みにかなりの時間がかかる場合があります。
156
 
README_ko.md CHANGED
@@ -20,7 +20,7 @@
20
  <img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
21
  </a>
22
  <a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
23
- <img src="https://img.shields.io/badge/docker_pull-ragflow:v0.14.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.14.0">
24
  </a>
25
  <a href="https://github.com/infiniflow/ragflow/releases/latest">
26
  <img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@@ -152,9 +152,9 @@
152
  $ docker compose -f docker-compose.yml up -d
153
  ```
154
 
155
- > - 특정 버전의 RAGFlow slim Docker 이미지를 다운로드하려면, **docker/.env**에서 `RAGFlow_IMAGE` 변수를 원하는 버전으로 업데이트하세요. 예를 들어, `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.0-slim`으로 설정합니다. 이 변경을 완료한 후, 위의 명령을 다시 실행하여 다운로드를 시작하세요.
156
  > - RAGFlow의 임베딩 모델과 Python 라이브러리를 포함한 개발 버전 Docker 이미지를 다운로드하려면, **docker/.env**에서 `RAGFlow_IMAGE` 변수를 `RAGFLOW_IMAGE=infiniflow/ragflow:dev`로 업데이트하세요. 이 변경을 완료한 후, 위의 명령을 다시 실행하여 다운로드를 시작하세요.
157
- > - 특정 버전의 RAGFlow Docker 이미지를 임베딩 모델과 Python 라이브러리를 포함하여 다운로드하려면, **docker/.env**에서 `RAGFlow_IMAGE` 변수를 원하는 버전으로 업데이트하세요. 예를 들어, `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.0` 로 설정합니다. 이 변경을 완료한 후, 위의 명령을 다시 실행하여 다운로드를 시작하세요.
158
 
159
  > **NOTE:** 임베딩 모델과 Python 라이브러리를 포함한 RAGFlow Docker 이미지의 크기는 약 9GB이며, 로드하는 데 상당히 오랜 시간이 걸릴 수 있습니다.
160
 
 
20
  <img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
21
  </a>
22
  <a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
23
+ <img src="https://img.shields.io/badge/docker_pull-ragflow:v0.14.1-brightgreen" alt="docker pull infiniflow/ragflow:v0.14.1">
24
  </a>
25
  <a href="https://github.com/infiniflow/ragflow/releases/latest">
26
  <img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
 
152
  $ docker compose -f docker-compose.yml up -d
153
  ```
154
 
155
+ > - 특정 버전의 RAGFlow slim Docker 이미지를 다운로드하려면, **docker/.env**에서 `RAGFlow_IMAGE` 변수를 원하는 버전으로 업데이트하세요. 예를 들어, `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.1-slim`으로 설정합니다. 이 변경을 완료한 후, 위의 명령을 다시 실행하여 다운로드를 시작하세요.
156
  > - RAGFlow의 임베딩 모델과 Python 라이브러리를 포함한 개발 버전 Docker 이미지를 다운로드하려면, **docker/.env**에서 `RAGFlow_IMAGE` 변수를 `RAGFLOW_IMAGE=infiniflow/ragflow:dev`로 업데이트하세요. 이 변경을 완료한 후, 위의 명령을 다시 실행하여 다운로드를 시작하세요.
157
+ > - 특정 버전의 RAGFlow Docker 이미지를 임베딩 모델과 Python 라이브러리를 포함하여 다운로드하려면, **docker/.env**에서 `RAGFlow_IMAGE` 변수를 원하는 버전으로 업데이트하세요. 예를 들어, `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.1` 로 설정합니다. 이 변경을 완료한 후, 위의 명령을 다시 실행하여 다운로드를 시작하세요.
158
 
159
  > **NOTE:** 임베딩 모델과 Python 라이브러리를 포함한 RAGFlow Docker 이미지의 크기는 약 9GB이며, 로드하는 데 상당히 오랜 시간이 걸릴 수 있습니다.
160
 
README_zh.md CHANGED
@@ -20,7 +20,7 @@
20
  <img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
21
  </a>
22
  <a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
23
- <img src="https://img.shields.io/badge/docker_pull-ragflow:v0.14.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.14.0">
24
  </a>
25
  <a href="https://github.com/infiniflow/ragflow/releases/latest">
26
  <img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
@@ -149,9 +149,9 @@
149
  $ docker compose -f docker-compose.yml up -d
150
  ```
151
 
152
- > - 如果你想下载并运行特定版本的 RAGFlow slim Docker 镜像,请在 **docker/.env** 文件中找到 `RAGFLOW_IMAGE` 变量,将其改为对应版本。例如 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.0-slim`,然后再运行上述命令。
153
  > - 如果您想安装内置 embedding 模型和 Python 库的 dev 版本的 Docker 镜像,需要将 **docker/.env** 文件中的 `RAGFLOW_IMAGE` 变量修改为: `RAGFLOW_IMAGE=infiniflow/ragflow:dev`。
154
- > - 如果您想安装内置 embedding 模型和 Python 库的指定版本的 RAGFlow Docker 镜像,需要将 **docker/.env** 文件中的 `RAGFLOW_IMAGE` 变量修改为: `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.0`。修改后,再运行上面的命令。
155
  > **注意:** 安装内置 embedding 模型和 Python 库的指定版本的 RAGFlow Docker 镜像大小约 9 GB,可能需要更长时间下载,请耐心等待。
156
 
157
  4. 服务器启动成功后再次确认服务器状态:
 
20
  <img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99">
21
  </a>
22
  <a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
23
+ <img src="https://img.shields.io/badge/docker_pull-ragflow:v0.14.1-brightgreen" alt="docker pull infiniflow/ragflow:v0.14.1">
24
  </a>
25
  <a href="https://github.com/infiniflow/ragflow/releases/latest">
26
  <img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
 
149
  $ docker compose -f docker-compose.yml up -d
150
  ```
151
 
152
+ > - 如果你想下载并运行特定版本的 RAGFlow slim Docker 镜像,请在 **docker/.env** 文件中找到 `RAGFLOW_IMAGE` 变量,将其改为对应版本。例如 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.1-slim`,然后再运行上述命令。
153
  > - 如果您想安装内置 embedding 模型和 Python 库的 dev 版本的 Docker 镜像,需要将 **docker/.env** 文件中的 `RAGFLOW_IMAGE` 变量修改为: `RAGFLOW_IMAGE=infiniflow/ragflow:dev`。
154
+ > - 如果您想安装内置 embedding 模型和 Python 库的指定版本的 RAGFlow Docker 镜像,需要将 **docker/.env** 文件中的 `RAGFLOW_IMAGE` 变量修改为: `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.1`。修改后,再运行上面的命令。
155
  > **注意:** 安装内置 embedding 模型和 Python 库的指定版本的 RAGFlow Docker 镜像大小约 9 GB,可能需要更长时间下载,请耐心等待。
156
 
157
  4. 服务器启动成功后再次确认服务器状态:
docs/guides/configure_knowledge_base.md CHANGED
@@ -103,7 +103,7 @@ RAGFlow features visibility and explainability, allowing you to view the chunkin
103
 
104
  2. Hover over each snapshot for a quick view of each chunk.
105
 
106
- 3. Double click the chunked texts to add keywords or make *manual* changes where necessary:
107
 
108
  ![update chunk](https://github.com/infiniflow/ragflow/assets/93570324/1d84b408-4e9f-46fd-9413-8c1059bf9c76)
109
 
@@ -111,7 +111,7 @@ RAGFlow features visibility and explainability, allowing you to view the chunkin
111
  You can add keywords to a file chunk to increase its ranking for queries containing those keywords. This action increases its keyword weight and can improve its position in search list.
112
  :::
113
 
114
- 4. In Retrieval testing, ask a quick question in **Test text** to double check if your configurations work:
115
 
116
  _As you can tell from the following, RAGFlow responds with truthful citations._
117
 
@@ -128,7 +128,7 @@ RAGFlow uses multiple recall of both full-text search and vector search in its c
128
 
129
  ## Search for knowledge base
130
 
131
- As of RAGFlow v0.14.0, the search feature is still in a rudimentary form, supporting only knowledge base search by name.
132
 
133
  ![search knowledge base](https://github.com/infiniflow/ragflow/assets/93570324/836ae94c-2438-42be-879e-c7ad2a59693e)
134
 
 
103
 
104
  2. Hover over each snapshot for a quick view of each chunk.
105
 
106
+ 3. Double-click the chunked texts to add keywords or make *manual* changes where necessary:
107
 
108
  ![update chunk](https://github.com/infiniflow/ragflow/assets/93570324/1d84b408-4e9f-46fd-9413-8c1059bf9c76)
109
 
 
111
  You can add keywords to a file chunk to increase its ranking for queries containing those keywords. This action increases its keyword weight and can improve its position in search list.
112
  :::
113
 
114
+ 4. In Retrieval testing, ask a quick question in **Test text** to double-check if your configurations work:
115
 
116
  _As you can tell from the following, RAGFlow responds with truthful citations._
117
 
 
128
 
129
  ## Search for knowledge base
130
 
131
+ As of RAGFlow v0.14.1, the search feature is still in a rudimentary form, supporting only knowledge base search by name.
132
 
133
  ![search knowledge base](https://github.com/infiniflow/ragflow/assets/93570324/836ae94c-2438-42be-879e-c7ad2a59693e)
134
 
docs/guides/deploy_local_llm.mdx CHANGED
@@ -108,7 +108,7 @@ Click on your logo **>** **Model Providers** **>** **System Model Settings** to
108
 
109
  Update your chat model accordingly in **Chat Configuration**:
110
 
111
- > If your local model is an embedding model, update it on the configruation page of your knowledge base.
112
 
113
  ## Deploy a local model using Xinference
114
 
@@ -161,7 +161,7 @@ Click on your logo **>** **Model Providers** **>** **System Model Settings** to
161
 
162
  Update your chat model accordingly in **Chat Configuration**:
163
 
164
- > If your local model is an embedding model, update it on the configruation page of your knowledge base.
165
 
166
  ## Deploy a local model using IPEX-LLM
167
 
 
108
 
109
  Update your chat model accordingly in **Chat Configuration**:
110
 
111
+ > If your local model is an embedding model, update it on the configuration page of your knowledge base.
112
 
113
  ## Deploy a local model using Xinference
114
 
 
161
 
162
  Update your chat model accordingly in **Chat Configuration**:
163
 
164
+ > If your local model is an embedding model, update it on the configuration page of your knowledge base.
165
 
166
  ## Deploy a local model using IPEX-LLM
167
 
docs/guides/develop/acquire_ragflow_api_key.md CHANGED
@@ -7,7 +7,7 @@ slug: /acquire_ragflow_api_key
7
 
8
  A key is required for the RAGFlow server to authenticate your requests via HTTP or a Python API. This documents provides instructions on obtaining a RAGFlow API key.
9
 
10
- 1. Click your avatar on the top right corner of the RAGFlow UI to access the configuration page.
11
  2. Click **API** to switch to the **API** page.
12
  3. Obtain a RAGFlow API key:
13
 
 
7
 
8
  A key is required for the RAGFlow server to authenticate your requests via HTTP or a Python API. This documents provides instructions on obtaining a RAGFlow API key.
9
 
10
+ 1. Click your avatar in the top right corner of the RAGFlow UI to access the configuration page.
11
  2. Click **API** to switch to the **API** page.
12
  3. Obtain a RAGFlow API key:
13
 
docs/guides/manage_files.md CHANGED
@@ -81,4 +81,4 @@ RAGFlow's file management allows you to download an uploaded file:
81
 
82
  ![download_file](https://github.com/infiniflow/ragflow/assets/93570324/cf3b297f-7d9b-4522-bf5f-4f45743e4ed5)
83
 
84
- > As of RAGFlow v0.14.0, bulk download is not supported, nor can you download an entire folder.
 
81
 
82
  ![download_file](https://github.com/infiniflow/ragflow/assets/93570324/cf3b297f-7d9b-4522-bf5f-4f45743e4ed5)
83
 
84
+ > As of RAGFlow v0.14.1, bulk download is not supported, nor can you download an entire folder.
docs/guides/manage_team_members.md CHANGED
@@ -17,7 +17,7 @@ By default, each RAGFlow user is assigned a single team named after their name.
17
  Team members are currently *not* allowed to invite users to your team, and only you, the team owner, is permitted to do so.
18
  :::
19
 
20
- To enter the **Team** page, click on your avatar on the top right corner of the page **>** Team:
21
 
22
  ![team](https://github.com/user-attachments/assets/0eac2503-26bc-4568-b3f2-bcd84069a07a)
23
 
 
17
  Team members are currently *not* allowed to invite users to your team, and only you, the team owner, is permitted to do so.
18
  :::
19
 
20
+ To enter the **Team** page, click on your avatar in the top right corner of the page **>** Team:
21
 
22
  ![team](https://github.com/user-attachments/assets/0eac2503-26bc-4568-b3f2-bcd84069a07a)
23
 
docs/guides/run_health_check.md CHANGED
@@ -5,7 +5,7 @@ slug: /run_health_check
5
 
6
  # Run health check on RAGFlow's dependencies
7
 
8
- Double check the health status of RAGFlow's dependencies.
9
 
10
  The operation of RAGFlow depends on four services:
11
 
@@ -16,7 +16,7 @@ The operation of RAGFlow depends on four services:
16
 
17
  If an exception or error occurs related to any of the above services, such as `Exception: Can't connect to ES cluster`, refer to this document to check their health status.
18
 
19
- You can also click you avatar on the top right corner of the page **>** System to view the visualized health status of RAGFlow's core services. The following screenshot shows that all services are 'green' (running healthily). The task executor displays the *cumulative* number of completed and failed document parsing tasks from the past 30 minutes:
20
 
21
  ![system_status_page](https://github.com/user-attachments/assets/b0c1a11e-93e3-4947-b17a-1bfb4cdab6e4)
22
 
 
5
 
6
  # Run health check on RAGFlow's dependencies
7
 
8
+ Double-check the health status of RAGFlow's dependencies.
9
 
10
  The operation of RAGFlow depends on four services:
11
 
 
16
 
17
  If an exception or error occurs related to any of the above services, such as `Exception: Can't connect to ES cluster`, refer to this document to check their health status.
18
 
19
+ You can also click you avatar in the top right corner of the page **>** System to view the visualized health status of RAGFlow's core services. The following screenshot shows that all services are 'green' (running healthily). The task executor displays the *cumulative* number of completed and failed document parsing tasks from the past 30 minutes:
20
 
21
  ![system_status_page](https://github.com/user-attachments/assets/b0c1a11e-93e3-4947-b17a-1bfb4cdab6e4)
22
 
docs/guides/start_chat.md CHANGED
@@ -19,7 +19,7 @@ You start an AI conversation by creating an assistant.
19
 
20
  - **Assistant name** is the name of your chat assistant. Each assistant corresponds to a dialogue with a unique combination of knowledge bases, prompts, hybrid search configurations, and large model settings.
21
  - **Empty response**:
22
- - If you wish to *confine* RAGFlow's answers to your knowledge bases, leave a response here. Then when it doesn't retrieve an answer, it *uniformly* responds with what you set here.
23
  - If you wish RAGFlow to *improvise* when it doesn't retrieve an answer from your knowledge bases, leave it blank, which may give rise to hallucinations.
24
  - **Show Quote**: This is a key feature of RAGFlow and enabled by default. RAGFlow does not work like a black box. instead, it clearly shows the sources of information that its responses are based on.
25
  - Select the corresponding knowledge bases. You can select one or multiple knowledge bases, but ensure that they use the same embedding model, otherwise an error would occur.
 
19
 
20
  - **Assistant name** is the name of your chat assistant. Each assistant corresponds to a dialogue with a unique combination of knowledge bases, prompts, hybrid search configurations, and large model settings.
21
  - **Empty response**:
22
+ - If you wish to *confine* RAGFlow's answers to your knowledge bases, leave a response here. Then, when it doesn't retrieve an answer, it *uniformly* responds with what you set here.
23
  - If you wish RAGFlow to *improvise* when it doesn't retrieve an answer from your knowledge bases, leave it blank, which may give rise to hallucinations.
24
  - **Show Quote**: This is a key feature of RAGFlow and enabled by default. RAGFlow does not work like a black box. instead, it clearly shows the sources of information that its responses are based on.
25
  - Select the corresponding knowledge bases. You can select one or multiple knowledge bases, but ensure that they use the same embedding model, otherwise an error would occur.
docs/guides/upgrade_ragflow.mdx CHANGED
@@ -62,16 +62,16 @@ To upgrade RAGFlow, you must upgrade **both** your code **and** your Docker imag
62
  git clone https://github.com/infiniflow/ragflow.git
63
  ```
64
 
65
- 2. Switch to the latest, officially published release, e.g., `v0.14.0`:
66
 
67
  ```bash
68
- git checkout v0.14.0
69
  ```
70
 
71
  3. Update **ragflow/docker/.env** as follows:
72
 
73
  ```bash
74
- RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.0
75
  ```
76
 
77
  4. Update the RAGFlow image and restart RAGFlow:
 
62
  git clone https://github.com/infiniflow/ragflow.git
63
  ```
64
 
65
+ 2. Switch to the latest, officially published release, e.g., `v0.14.1`:
66
 
67
  ```bash
68
+ git checkout v0.14.1
69
  ```
70
 
71
  3. Update **ragflow/docker/.env** as follows:
72
 
73
  ```bash
74
+ RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.1
75
  ```
76
 
77
  4. Update the RAGFlow image and restart RAGFlow:
docs/quickstart.mdx CHANGED
@@ -32,9 +32,9 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
32
  <details>
33
  <summary>1. Ensure <code>vm.max_map_count</code> &ge; 262144:</summary>
34
 
35
- `vm.max_map_count`. This value sets the maximum number of memory map areas a process may have. Its default value is 65530. While most applications require fewer than a thousand maps, reducing this value can result in abmornal behaviors, and the system will throw out-of-memory errors when a process reaches the limitation.
36
 
37
- RAGFlow v0.14.0 uses Elasticsearch for multiple recall. Setting the value of `vm.max_map_count` correctly is crucial to the proper functioning of the Elasticsearch component.
38
 
39
  <Tabs
40
  defaultValue="linux"
@@ -184,9 +184,9 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
184
  $ docker compose -f docker-compose.yml up -d
185
  ```
186
 
187
- > - To download a RAGFlow slim Docker image of a specific version, update the `RAGFlOW_IMAGE` variable in **docker/.env** to your desired version. For example, `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.0-slim`. After making this change, rerun the command above to initiate the download.
188
  > - To download the dev version of RAGFlow Docker image *including* embedding models and Python libraries, update the `RAGFlOW_IMAGE` variable in **docker/.env** to `RAGFLOW_IMAGE=infiniflow/ragflow:dev`. After making this change, rerun the command above to initiate the download.
189
- > - To download a specific version of RAGFlow Docker image *including* embedding models and Python libraries, update the `RAGFlOW_IMAGE` variable in **docker/.env** to your desired version. For example, `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.0`. After making this change, rerun the command above to initiate the download.
190
 
191
  :::tip NOTE
192
  A RAGFlow Docker image that includes embedding models and Python libraries is approximately 9GB in size and may take significantly longer time to load.
 
32
  <details>
33
  <summary>1. Ensure <code>vm.max_map_count</code> &ge; 262144:</summary>
34
 
35
+ `vm.max_map_count`. This value sets the maximum number of memory map areas a process may have. Its default value is 65530. While most applications require fewer than a thousand maps, reducing this value can result in abnormal behaviors, and the system will throw out-of-memory errors when a process reaches the limitation.
36
 
37
+ RAGFlow v0.14.1 uses Elasticsearch or [Infinity](https://github.com/infiniflow/infinity) for multiple recall. Setting the value of `vm.max_map_count` correctly is crucial to the proper functioning of the Elasticsearch component.
38
 
39
  <Tabs
40
  defaultValue="linux"
 
184
  $ docker compose -f docker-compose.yml up -d
185
  ```
186
 
187
+ > - To download a RAGFlow slim Docker image of a specific version, update the `RAGFlOW_IMAGE` variable in **docker/.env** to your desired version. For example, `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.1-slim`. After making this change, rerun the command above to initiate the download.
188
  > - To download the dev version of RAGFlow Docker image *including* embedding models and Python libraries, update the `RAGFlOW_IMAGE` variable in **docker/.env** to `RAGFLOW_IMAGE=infiniflow/ragflow:dev`. After making this change, rerun the command above to initiate the download.
189
+ > - To download a specific version of RAGFlow Docker image *including* embedding models and Python libraries, update the `RAGFlOW_IMAGE` variable in **docker/.env** to your desired version. For example, `RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.1`. After making this change, rerun the command above to initiate the download.
190
 
191
  :::tip NOTE
192
  A RAGFlow Docker image that includes embedding models and Python libraries is approximately 9GB in size and may take significantly longer time to load.