H
KevinHuSh
commited on
Commit
·
dffdcde
1
Parent(s):
255441a
Add Support for AWS Bedrock (#1408)
Browse files### What problem does this PR solve?
#308
### Type of change
- [x] New Feature (non-breaking change which adds functionality)
---------
Co-authored-by: KevinHuSh <[email protected]>
- api/apps/llm_app.py +14 -4
- api/db/init_data.py +169 -1
- rag/llm/__init__.py +4 -2
- rag/llm/chat_model.py +87 -0
- rag/llm/embedding_model.py +45 -0
- requirements.txt +2 -0
- requirements_arm.txt +2 -0
- requirements_dev.txt +2 -0
api/apps/llm_app.py
CHANGED
@@ -109,15 +109,23 @@ def set_api_key():
|
|
109 |
def add_llm():
|
110 |
req = request.json
|
111 |
factory = req["llm_factory"]
|
112 |
-
|
113 |
-
# Assemble volc_ak, volc_sk, endpoint_id into api_key
|
114 |
if factory == "VolcEngine":
|
|
|
|
|
115 |
temp = list(eval(req["llm_name"]).items())[0]
|
116 |
llm_name = temp[0]
|
117 |
endpoint_id = temp[1]
|
118 |
api_key = '{' + f'"volc_ak": "{req.get("volc_ak", "")}", ' \
|
119 |
f'"volc_sk": "{req.get("volc_sk", "")}", ' \
|
120 |
f'"ep_id": "{endpoint_id}", ' + '}'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
else:
|
122 |
llm_name = req["llm_name"]
|
123 |
api_key = "xxxxxxxxxxxxxxx"
|
@@ -134,7 +142,9 @@ def add_llm():
|
|
134 |
msg = ""
|
135 |
if llm["model_type"] == LLMType.EMBEDDING.value:
|
136 |
mdl = EmbeddingModel[factory](
|
137 |
-
key=
|
|
|
|
|
138 |
try:
|
139 |
arr, tc = mdl.encode(["Test if the api key is available"])
|
140 |
if len(arr[0]) == 0 or tc == 0:
|
@@ -143,7 +153,7 @@ def add_llm():
|
|
143 |
msg += f"\nFail to access embedding model({llm['llm_name']})." + str(e)
|
144 |
elif llm["model_type"] == LLMType.CHAT.value:
|
145 |
mdl = ChatModel[factory](
|
146 |
-
key=llm['api_key'] if factory
|
147 |
model_name=llm["llm_name"],
|
148 |
base_url=llm["api_base"]
|
149 |
)
|
|
|
109 |
def add_llm():
|
110 |
req = request.json
|
111 |
factory = req["llm_factory"]
|
112 |
+
|
|
|
113 |
if factory == "VolcEngine":
|
114 |
+
# For VolcEngine, due to its special authentication method
|
115 |
+
# Assemble volc_ak, volc_sk, endpoint_id into api_key
|
116 |
temp = list(eval(req["llm_name"]).items())[0]
|
117 |
llm_name = temp[0]
|
118 |
endpoint_id = temp[1]
|
119 |
api_key = '{' + f'"volc_ak": "{req.get("volc_ak", "")}", ' \
|
120 |
f'"volc_sk": "{req.get("volc_sk", "")}", ' \
|
121 |
f'"ep_id": "{endpoint_id}", ' + '}'
|
122 |
+
elif factory == "Bedrock":
|
123 |
+
# For Bedrock, due to its special authentication method
|
124 |
+
# Assemble bedrock_ak, bedrock_sk, bedrock_region
|
125 |
+
llm_name = req["llm_name"]
|
126 |
+
api_key = '{' + f'"bedrock_ak": "{req.get("bedrock_ak", "")}", ' \
|
127 |
+
f'"bedrock_sk": "{req.get("bedrock_sk", "")}", ' \
|
128 |
+
f'"bedrock_region": "{req.get("bedrock_region", "")}", ' + '}'
|
129 |
else:
|
130 |
llm_name = req["llm_name"]
|
131 |
api_key = "xxxxxxxxxxxxxxx"
|
|
|
142 |
msg = ""
|
143 |
if llm["model_type"] == LLMType.EMBEDDING.value:
|
144 |
mdl = EmbeddingModel[factory](
|
145 |
+
key=llm['api_key'] if factory in ["VolcEngine", "Bedrock"] else None,
|
146 |
+
model_name=llm["llm_name"],
|
147 |
+
base_url=llm["api_base"])
|
148 |
try:
|
149 |
arr, tc = mdl.encode(["Test if the api key is available"])
|
150 |
if len(arr[0]) == 0 or tc == 0:
|
|
|
153 |
msg += f"\nFail to access embedding model({llm['llm_name']})." + str(e)
|
154 |
elif llm["model_type"] == LLMType.CHAT.value:
|
155 |
mdl = ChatModel[factory](
|
156 |
+
key=llm['api_key'] if factory in ["VolcEngine", "Bedrock"] else None,
|
157 |
model_name=llm["llm_name"],
|
158 |
base_url=llm["api_base"]
|
159 |
)
|
api/db/init_data.py
CHANGED
@@ -170,6 +170,11 @@ factory_infos = [{
|
|
170 |
"logo": "",
|
171 |
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
|
172 |
"status": "1",
|
|
|
|
|
|
|
|
|
|
|
173 |
}
|
174 |
# {
|
175 |
# "name": "文心一言",
|
@@ -730,7 +735,170 @@ def init_llm_factory():
|
|
730 |
"max_tokens": 765,
|
731 |
"model_type": LLMType.IMAGE2TEXT.value
|
732 |
},
|
733 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
734 |
]
|
735 |
for info in factory_infos:
|
736 |
try:
|
|
|
170 |
"logo": "",
|
171 |
"tags": "LLM,TEXT EMBEDDING,SPEECH2TEXT,MODERATION",
|
172 |
"status": "1",
|
173 |
+
},{
|
174 |
+
"name": "Bedrock",
|
175 |
+
"logo": "",
|
176 |
+
"tags": "LLM,TEXT EMBEDDING",
|
177 |
+
"status": "1",
|
178 |
}
|
179 |
# {
|
180 |
# "name": "文心一言",
|
|
|
735 |
"max_tokens": 765,
|
736 |
"model_type": LLMType.IMAGE2TEXT.value
|
737 |
},
|
738 |
+
# ------------------------ Bedrock -----------------------
|
739 |
+
{
|
740 |
+
"fid": factory_infos[16]["name"],
|
741 |
+
"llm_name": "ai21.j2-ultra-v1",
|
742 |
+
"tags": "LLM,CHAT,8k",
|
743 |
+
"max_tokens": 8191,
|
744 |
+
"model_type": LLMType.CHAT.value
|
745 |
+
}, {
|
746 |
+
"fid": factory_infos[16]["name"],
|
747 |
+
"llm_name": "ai21.j2-mid-v1",
|
748 |
+
"tags": "LLM,CHAT,8k",
|
749 |
+
"max_tokens": 8191,
|
750 |
+
"model_type": LLMType.CHAT.value
|
751 |
+
}, {
|
752 |
+
"fid": factory_infos[16]["name"],
|
753 |
+
"llm_name": "cohere.command-text-v14",
|
754 |
+
"tags": "LLM,CHAT,4k",
|
755 |
+
"max_tokens": 4096,
|
756 |
+
"model_type": LLMType.CHAT.value
|
757 |
+
}, {
|
758 |
+
"fid": factory_infos[16]["name"],
|
759 |
+
"llm_name": "cohere.command-light-text-v14",
|
760 |
+
"tags": "LLM,CHAT,4k",
|
761 |
+
"max_tokens": 4096,
|
762 |
+
"model_type": LLMType.CHAT.value
|
763 |
+
}, {
|
764 |
+
"fid": factory_infos[16]["name"],
|
765 |
+
"llm_name": "cohere.command-r-v1:0",
|
766 |
+
"tags": "LLM,CHAT,128k",
|
767 |
+
"max_tokens": 128 * 1024,
|
768 |
+
"model_type": LLMType.CHAT.value
|
769 |
+
}, {
|
770 |
+
"fid": factory_infos[16]["name"],
|
771 |
+
"llm_name": "cohere.command-r-plus-v1:0",
|
772 |
+
"tags": "LLM,CHAT,128k",
|
773 |
+
"max_tokens": 128000,
|
774 |
+
"model_type": LLMType.CHAT.value
|
775 |
+
}, {
|
776 |
+
"fid": factory_infos[16]["name"],
|
777 |
+
"llm_name": "anthropic.claude-v2",
|
778 |
+
"tags": "LLM,CHAT,100k",
|
779 |
+
"max_tokens": 100 * 1024,
|
780 |
+
"model_type": LLMType.CHAT.value
|
781 |
+
}, {
|
782 |
+
"fid": factory_infos[16]["name"],
|
783 |
+
"llm_name": "anthropic.claude-v2:1",
|
784 |
+
"tags": "LLM,CHAT,200k",
|
785 |
+
"max_tokens": 200 * 1024,
|
786 |
+
"model_type": LLMType.CHAT.value
|
787 |
+
}, {
|
788 |
+
"fid": factory_infos[16]["name"],
|
789 |
+
"llm_name": "anthropic.claude-3-sonnet-20240229-v1:0",
|
790 |
+
"tags": "LLM,CHAT,200k",
|
791 |
+
"max_tokens": 200 * 1024,
|
792 |
+
"model_type": LLMType.CHAT.value
|
793 |
+
}, {
|
794 |
+
"fid": factory_infos[16]["name"],
|
795 |
+
"llm_name": "anthropic.claude-3-5-sonnet-20240620-v1:0",
|
796 |
+
"tags": "LLM,CHAT,200k",
|
797 |
+
"max_tokens": 200 * 1024,
|
798 |
+
"model_type": LLMType.CHAT.value
|
799 |
+
}, {
|
800 |
+
"fid": factory_infos[16]["name"],
|
801 |
+
"llm_name": "anthropic.claude-3-haiku-20240307-v1:0",
|
802 |
+
"tags": "LLM,CHAT,200k",
|
803 |
+
"max_tokens": 200 * 1024,
|
804 |
+
"model_type": LLMType.CHAT.value
|
805 |
+
}, {
|
806 |
+
"fid": factory_infos[16]["name"],
|
807 |
+
"llm_name": "anthropic.claude-3-opus-20240229-v1:0",
|
808 |
+
"tags": "LLM,CHAT,200k",
|
809 |
+
"max_tokens": 200 * 1024,
|
810 |
+
"model_type": LLMType.CHAT.value
|
811 |
+
}, {
|
812 |
+
"fid": factory_infos[16]["name"],
|
813 |
+
"llm_name": "anthropic.claude-instant-v1",
|
814 |
+
"tags": "LLM,CHAT,100k",
|
815 |
+
"max_tokens": 100 * 1024,
|
816 |
+
"model_type": LLMType.CHAT.value
|
817 |
+
}, {
|
818 |
+
"fid": factory_infos[16]["name"],
|
819 |
+
"llm_name": "amazon.titan-text-express-v1",
|
820 |
+
"tags": "LLM,CHAT,8k",
|
821 |
+
"max_tokens": 8192,
|
822 |
+
"model_type": LLMType.CHAT.value
|
823 |
+
}, {
|
824 |
+
"fid": factory_infos[16]["name"],
|
825 |
+
"llm_name": "amazon.titan-text-premier-v1:0",
|
826 |
+
"tags": "LLM,CHAT,32k",
|
827 |
+
"max_tokens": 32 * 1024,
|
828 |
+
"model_type": LLMType.CHAT.value
|
829 |
+
}, {
|
830 |
+
"fid": factory_infos[16]["name"],
|
831 |
+
"llm_name": "amazon.titan-text-lite-v1",
|
832 |
+
"tags": "LLM,CHAT,4k",
|
833 |
+
"max_tokens": 4096,
|
834 |
+
"model_type": LLMType.CHAT.value
|
835 |
+
}, {
|
836 |
+
"fid": factory_infos[16]["name"],
|
837 |
+
"llm_name": "meta.llama2-13b-chat-v1",
|
838 |
+
"tags": "LLM,CHAT,4k",
|
839 |
+
"max_tokens": 4096,
|
840 |
+
"model_type": LLMType.CHAT.value
|
841 |
+
}, {
|
842 |
+
"fid": factory_infos[16]["name"],
|
843 |
+
"llm_name": "meta.llama2-70b-chat-v1",
|
844 |
+
"tags": "LLM,CHAT,4k",
|
845 |
+
"max_tokens": 4096,
|
846 |
+
"model_type": LLMType.CHAT.value
|
847 |
+
}, {
|
848 |
+
"fid": factory_infos[16]["name"],
|
849 |
+
"llm_name": "meta.llama3-8b-instruct-v1:0",
|
850 |
+
"tags": "LLM,CHAT,8k",
|
851 |
+
"max_tokens": 8192,
|
852 |
+
"model_type": LLMType.CHAT.value
|
853 |
+
}, {
|
854 |
+
"fid": factory_infos[16]["name"],
|
855 |
+
"llm_name": "meta.llama3-70b-instruct-v1:0",
|
856 |
+
"tags": "LLM,CHAT,8k",
|
857 |
+
"max_tokens": 8192,
|
858 |
+
"model_type": LLMType.CHAT.value
|
859 |
+
}, {
|
860 |
+
"fid": factory_infos[16]["name"],
|
861 |
+
"llm_name": "mistral.mistral-7b-instruct-v0:2",
|
862 |
+
"tags": "LLM,CHAT,8k",
|
863 |
+
"max_tokens": 8192,
|
864 |
+
"model_type": LLMType.CHAT.value
|
865 |
+
}, {
|
866 |
+
"fid": factory_infos[16]["name"],
|
867 |
+
"llm_name": "mistral.mixtral-8x7b-instruct-v0:1",
|
868 |
+
"tags": "LLM,CHAT,4k",
|
869 |
+
"max_tokens": 4096,
|
870 |
+
"model_type": LLMType.CHAT.value
|
871 |
+
}, {
|
872 |
+
"fid": factory_infos[16]["name"],
|
873 |
+
"llm_name": "mistral.mistral-large-2402-v1:0",
|
874 |
+
"tags": "LLM,CHAT,8k",
|
875 |
+
"max_tokens": 8192,
|
876 |
+
"model_type": LLMType.CHAT.value
|
877 |
+
}, {
|
878 |
+
"fid": factory_infos[16]["name"],
|
879 |
+
"llm_name": "mistral.mistral-small-2402-v1:0",
|
880 |
+
"tags": "LLM,CHAT,8k",
|
881 |
+
"max_tokens": 8192,
|
882 |
+
"model_type": LLMType.CHAT.value
|
883 |
+
}, {
|
884 |
+
"fid": factory_infos[16]["name"],
|
885 |
+
"llm_name": "amazon.titan-embed-text-v2:0",
|
886 |
+
"tags": "TEXT EMBEDDING",
|
887 |
+
"max_tokens": 8192,
|
888 |
+
"model_type": LLMType.EMBEDDING.value
|
889 |
+
}, {
|
890 |
+
"fid": factory_infos[16]["name"],
|
891 |
+
"llm_name": "cohere.embed-english-v3",
|
892 |
+
"tags": "TEXT EMBEDDING",
|
893 |
+
"max_tokens": 2048,
|
894 |
+
"model_type": LLMType.EMBEDDING.value
|
895 |
+
}, {
|
896 |
+
"fid": factory_infos[16]["name"],
|
897 |
+
"llm_name": "cohere.embed-multilingual-v3",
|
898 |
+
"tags": "TEXT EMBEDDING",
|
899 |
+
"max_tokens": 2048,
|
900 |
+
"model_type": LLMType.EMBEDDING.value
|
901 |
+
},
|
902 |
]
|
903 |
for info in factory_infos:
|
904 |
try:
|
rag/llm/__init__.py
CHANGED
@@ -31,7 +31,8 @@ EmbeddingModel = {
|
|
31 |
"BaiChuan": BaiChuanEmbed,
|
32 |
"Jina": JinaEmbed,
|
33 |
"BAAI": DefaultEmbedding,
|
34 |
-
"Mistral": MistralEmbed
|
|
|
35 |
}
|
36 |
|
37 |
|
@@ -58,7 +59,8 @@ ChatModel = {
|
|
58 |
"VolcEngine": VolcEngineChat,
|
59 |
"BaiChuan": BaiChuanChat,
|
60 |
"MiniMax": MiniMaxChat,
|
61 |
-
"Mistral": MistralChat
|
|
|
62 |
}
|
63 |
|
64 |
|
|
|
31 |
"BaiChuan": BaiChuanEmbed,
|
32 |
"Jina": JinaEmbed,
|
33 |
"BAAI": DefaultEmbedding,
|
34 |
+
"Mistral": MistralEmbed,
|
35 |
+
"Bedrock": BedrockEmbed
|
36 |
}
|
37 |
|
38 |
|
|
|
59 |
"VolcEngine": VolcEngineChat,
|
60 |
"BaiChuan": BaiChuanChat,
|
61 |
"MiniMax": MiniMaxChat,
|
62 |
+
"Mistral": MistralChat,
|
63 |
+
"Bedrock": BedrockChat
|
64 |
}
|
65 |
|
66 |
|
rag/llm/chat_model.py
CHANGED
@@ -533,3 +533,90 @@ class MistralChat(Base):
|
|
533 |
yield ans + "\n**ERROR**: " + str(e)
|
534 |
|
535 |
yield total_tokens
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
533 |
yield ans + "\n**ERROR**: " + str(e)
|
534 |
|
535 |
yield total_tokens
|
536 |
+
|
537 |
+
|
538 |
+
class BedrockChat(Base):
|
539 |
+
|
540 |
+
def __init__(self, key, model_name, **kwargs):
|
541 |
+
import boto3
|
542 |
+
from botocore.exceptions import ClientError
|
543 |
+
self.bedrock_ak = eval(key).get('bedrock_ak', '')
|
544 |
+
self.bedrock_sk = eval(key).get('bedrock_sk', '')
|
545 |
+
self.bedrock_region = eval(key).get('bedrock_region', '')
|
546 |
+
self.model_name = model_name
|
547 |
+
self.client = boto3.client(service_name='bedrock-runtime', region_name=self.bedrock_region,
|
548 |
+
aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)
|
549 |
+
|
550 |
+
def chat(self, system, history, gen_conf):
|
551 |
+
if system:
|
552 |
+
history.insert(0, {"role": "system", "content": system})
|
553 |
+
for k in list(gen_conf.keys()):
|
554 |
+
if k not in ["temperature", "top_p", "max_tokens"]:
|
555 |
+
del gen_conf[k]
|
556 |
+
if "max_tokens" in gen_conf:
|
557 |
+
gen_conf["maxTokens"] = gen_conf["max_tokens"]
|
558 |
+
_ = gen_conf.pop("max_tokens")
|
559 |
+
if "top_p" in gen_conf:
|
560 |
+
gen_conf["topP"] = gen_conf["top_p"]
|
561 |
+
_ = gen_conf.pop("top_p")
|
562 |
+
|
563 |
+
try:
|
564 |
+
# Send the message to the model, using a basic inference configuration.
|
565 |
+
response = self.client.converse(
|
566 |
+
modelId=self.model_name,
|
567 |
+
messages=history,
|
568 |
+
inferenceConfig=gen_conf
|
569 |
+
)
|
570 |
+
|
571 |
+
# Extract and print the response text.
|
572 |
+
ans = response["output"]["message"]["content"][0]["text"]
|
573 |
+
return ans, num_tokens_from_string(ans)
|
574 |
+
|
575 |
+
except (ClientError, Exception) as e:
|
576 |
+
return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0
|
577 |
+
|
578 |
+
def chat_streamly(self, system, history, gen_conf):
|
579 |
+
if system:
|
580 |
+
history.insert(0, {"role": "system", "content": system})
|
581 |
+
for k in list(gen_conf.keys()):
|
582 |
+
if k not in ["temperature", "top_p", "max_tokens"]:
|
583 |
+
del gen_conf[k]
|
584 |
+
if "max_tokens" in gen_conf:
|
585 |
+
gen_conf["maxTokens"] = gen_conf["max_tokens"]
|
586 |
+
_ = gen_conf.pop("max_tokens")
|
587 |
+
if "top_p" in gen_conf:
|
588 |
+
gen_conf["topP"] = gen_conf["top_p"]
|
589 |
+
_ = gen_conf.pop("top_p")
|
590 |
+
|
591 |
+
if self.model_name.split('.')[0] == 'ai21':
|
592 |
+
try:
|
593 |
+
response = self.client.converse(
|
594 |
+
modelId=self.model_name,
|
595 |
+
messages=history,
|
596 |
+
inferenceConfig=gen_conf
|
597 |
+
)
|
598 |
+
ans = response["output"]["message"]["content"][0]["text"]
|
599 |
+
return ans, num_tokens_from_string(ans)
|
600 |
+
|
601 |
+
except (ClientError, Exception) as e:
|
602 |
+
return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0
|
603 |
+
|
604 |
+
ans = ""
|
605 |
+
try:
|
606 |
+
# Send the message to the model, using a basic inference configuration.
|
607 |
+
streaming_response = self.client.converse_stream(
|
608 |
+
modelId=self.model_name,
|
609 |
+
messages=history,
|
610 |
+
inferenceConfig=gen_conf
|
611 |
+
)
|
612 |
+
|
613 |
+
# Extract and print the streamed response text in real-time.
|
614 |
+
for resp in streaming_response["stream"]:
|
615 |
+
if "contentBlockDelta" in resp:
|
616 |
+
ans += resp["contentBlockDelta"]["delta"]["text"]
|
617 |
+
yield ans
|
618 |
+
|
619 |
+
except (ClientError, Exception) as e:
|
620 |
+
yield ans + f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}"
|
621 |
+
|
622 |
+
yield num_tokens_from_string(ans)
|
rag/llm/embedding_model.py
CHANGED
@@ -374,3 +374,48 @@ class MistralEmbed(Base):
|
|
374 |
res = self.client.embeddings(input=[truncate(text, 8196)],
|
375 |
model=self.model_name)
|
376 |
return np.array(res.data[0].embedding), res.usage.total_tokens
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
374 |
res = self.client.embeddings(input=[truncate(text, 8196)],
|
375 |
model=self.model_name)
|
376 |
return np.array(res.data[0].embedding), res.usage.total_tokens
|
377 |
+
|
378 |
+
|
379 |
+
class BedrockEmbed(Base):
|
380 |
+
def __init__(self, key, model_name,
|
381 |
+
**kwargs):
|
382 |
+
import boto3
|
383 |
+
self.bedrock_ak = eval(key).get('bedrock_ak', '')
|
384 |
+
self.bedrock_sk = eval(key).get('bedrock_sk', '')
|
385 |
+
self.bedrock_region = eval(key).get('bedrock_region', '')
|
386 |
+
self.model_name = model_name
|
387 |
+
self.client = boto3.client(service_name='bedrock-runtime', region_name=self.bedrock_region,
|
388 |
+
aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)
|
389 |
+
|
390 |
+
def encode(self, texts: list, batch_size=32):
|
391 |
+
texts = [truncate(t, 8196) for t in texts]
|
392 |
+
embeddings = []
|
393 |
+
token_count = 0
|
394 |
+
for text in texts:
|
395 |
+
if self.model_name.split('.')[0] == 'amazon':
|
396 |
+
body = {"inputText": text}
|
397 |
+
elif self.model_name.split('.')[0] == 'cohere':
|
398 |
+
body = {"texts": [text], "input_type": 'search_document'}
|
399 |
+
|
400 |
+
response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
|
401 |
+
model_response = json.loads(response["body"].read())
|
402 |
+
embeddings.extend([model_response["embedding"]])
|
403 |
+
token_count += num_tokens_from_string(text)
|
404 |
+
|
405 |
+
return np.array(embeddings), token_count
|
406 |
+
|
407 |
+
def encode_queries(self, text):
|
408 |
+
|
409 |
+
embeddings = []
|
410 |
+
token_count = num_tokens_from_string(text)
|
411 |
+
if self.model_name.split('.')[0] == 'amazon':
|
412 |
+
body = {"inputText": truncate(text, 8196)}
|
413 |
+
elif self.model_name.split('.')[0] == 'cohere':
|
414 |
+
body = {"texts": [truncate(text, 8196)], "input_type": 'search_query'}
|
415 |
+
|
416 |
+
response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
|
417 |
+
model_response = json.loads(response["body"].read())
|
418 |
+
embeddings.extend([model_response["embedding"]])
|
419 |
+
|
420 |
+
return np.array(embeddings), token_count
|
421 |
+
|
requirements.txt
CHANGED
@@ -144,4 +144,6 @@ cn2an==0.5.22
|
|
144 |
roman-numbers==1.0.2
|
145 |
word2number==1.1
|
146 |
markdown==3.6
|
|
|
|
|
147 |
duckduckgo_search==6.1.9
|
|
|
144 |
roman-numbers==1.0.2
|
145 |
word2number==1.1
|
146 |
markdown==3.6
|
147 |
+
mistralai==0.4.2
|
148 |
+
boto3==1.34.140
|
149 |
duckduckgo_search==6.1.9
|
requirements_arm.txt
CHANGED
@@ -145,4 +145,6 @@ cn2an==0.5.22
|
|
145 |
roman-numbers==1.0.2
|
146 |
word2number==1.1
|
147 |
markdown==3.6
|
|
|
|
|
148 |
duckduckgo_search==6.1.9
|
|
|
145 |
roman-numbers==1.0.2
|
146 |
word2number==1.1
|
147 |
markdown==3.6
|
148 |
+
mistralai==0.4.2
|
149 |
+
boto3==1.34.140
|
150 |
duckduckgo_search==6.1.9
|
requirements_dev.txt
CHANGED
@@ -130,4 +130,6 @@ cn2an==0.5.22
|
|
130 |
roman-numbers==1.0.2
|
131 |
word2number==1.1
|
132 |
markdown==3.6
|
|
|
|
|
133 |
duckduckgo_search==6.1.9
|
|
|
130 |
roman-numbers==1.0.2
|
131 |
word2number==1.1
|
132 |
markdown==3.6
|
133 |
+
mistralai==0.4.2
|
134 |
+
boto3==1.34.140
|
135 |
duckduckgo_search==6.1.9
|