lidp
commited on
Commit
·
e1017ef
1
Parent(s):
172caf6
Add benchmark ndcg@10 (#2326)
Browse files### What problem does this PR solve?
### Type of change
- [x] New Feature (non-breaking change which adds functionality)
- rag/benchmark.py +94 -0
- requirements.txt +1 -0
- requirements_arm.txt +1 -0
rag/benchmark.py
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#
|
| 2 |
+
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
#
|
| 16 |
+
|
| 17 |
+
import argparse
|
| 18 |
+
from collections import defaultdict
|
| 19 |
+
from api.db import FileType, TaskStatus, ParserType, LLMType
|
| 20 |
+
from api.db.services.llm_service import LLMBundle
|
| 21 |
+
from api.db.services.knowledgebase_service import KnowledgebaseService
|
| 22 |
+
from api.settings import retrievaler
|
| 23 |
+
from api.utils import get_uuid
|
| 24 |
+
from rag.nlp import tokenize, search
|
| 25 |
+
from rag.utils.es_conn import ELASTICSEARCH
|
| 26 |
+
from ranx import evaluate
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class benchmark_ndcg10:
|
| 30 |
+
def __init__(self, kb_id):
|
| 31 |
+
e, kb = KnowledgebaseService.get_by_id(kb_id)
|
| 32 |
+
self.similarity_threshold = kb.similarity_threshold
|
| 33 |
+
self.vector_similarity_weight = kb.vector_similarity_weight
|
| 34 |
+
self.embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING, llm_name=kb.embd_id, lang=kb.language)
|
| 35 |
+
|
| 36 |
+
def _get_benchmarks(self, query, count=16):
|
| 37 |
+
req = {"question": query, "size": count, "vector": True, "similarity": self.similarity_threshold}
|
| 38 |
+
sres = retrievaler.search(req, search.index_name("benchmark"), self.embd_mdl)
|
| 39 |
+
return sres
|
| 40 |
+
|
| 41 |
+
def _get_retrieval(self, qrels):
|
| 42 |
+
run = defaultdict(dict)
|
| 43 |
+
query_list = list(qrels.keys())
|
| 44 |
+
for query in query_list:
|
| 45 |
+
sres = self._get_benchmarks(query)
|
| 46 |
+
sim, _, _ = retrievaler.rerank(sres, query, 1 - self.vector_similarity_weight,
|
| 47 |
+
self.vector_similarity_weight)
|
| 48 |
+
for index, id in enumerate(sres.ids):
|
| 49 |
+
run[query][id] = sim[index]
|
| 50 |
+
return run
|
| 51 |
+
|
| 52 |
+
def embedding(self, docs, batch_size=16):
|
| 53 |
+
vects = []
|
| 54 |
+
cnts = [d["content_with_weight"] for d in docs]
|
| 55 |
+
for i in range(0, len(cnts), batch_size):
|
| 56 |
+
vts, c = self.embd_mdl.encode(cnts[i: i + batch_size])
|
| 57 |
+
vects.extend(vts.tolist())
|
| 58 |
+
assert len(docs) == len(vects)
|
| 59 |
+
for i, d in enumerate(docs):
|
| 60 |
+
v = vects[i]
|
| 61 |
+
d["q_%d_vec" % len(v)] = v
|
| 62 |
+
return docs
|
| 63 |
+
|
| 64 |
+
def __call__(self, file_path):
|
| 65 |
+
qrels = defaultdict(dict)
|
| 66 |
+
|
| 67 |
+
docs = []
|
| 68 |
+
with open(file_path) as f:
|
| 69 |
+
for line in f:
|
| 70 |
+
query, text, rel = line.strip('\n').split()
|
| 71 |
+
d = {
|
| 72 |
+
"id": get_uuid()
|
| 73 |
+
}
|
| 74 |
+
tokenize(d, text)
|
| 75 |
+
docs.append(d)
|
| 76 |
+
if len(docs) >= 32:
|
| 77 |
+
ELASTICSEARCH.bulk(docs, search.index_name("benchmark"))
|
| 78 |
+
docs = []
|
| 79 |
+
qrels[query][d["id"]] = float(rel)
|
| 80 |
+
docs = self.embedding(docs)
|
| 81 |
+
ELASTICSEARCH.bulk(docs, search.index_name("benchmark"))
|
| 82 |
+
|
| 83 |
+
run = self._get_retrieval(qrels)
|
| 84 |
+
return evaluate(qrels, run, "ndcg@10")
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
if __name__ == '__main__':
|
| 88 |
+
parser = argparse.ArgumentParser()
|
| 89 |
+
parser.add_argument('-f', '--filepath', default='', help="file path", action='store', required=True)
|
| 90 |
+
parser.add_argument('-k', '--kb_id', default='', help="kb_id", action='store', required=True)
|
| 91 |
+
args = parser.parse_args()
|
| 92 |
+
|
| 93 |
+
ex = benchmark_ndcg10(args.kb_id)
|
| 94 |
+
print(ex(args.filepath))
|
requirements.txt
CHANGED
|
@@ -70,6 +70,7 @@ python_dateutil==2.8.2
|
|
| 70 |
python_pptx==0.6.23
|
| 71 |
pywencai==0.12.2
|
| 72 |
qianfan==0.4.6
|
|
|
|
| 73 |
readability_lxml==0.8.1
|
| 74 |
redis==5.0.3
|
| 75 |
Requests==2.32.2
|
|
|
|
| 70 |
python_pptx==0.6.23
|
| 71 |
pywencai==0.12.2
|
| 72 |
qianfan==0.4.6
|
| 73 |
+
ranx==0.3.20
|
| 74 |
readability_lxml==0.8.1
|
| 75 |
redis==5.0.3
|
| 76 |
Requests==2.32.2
|
requirements_arm.txt
CHANGED
|
@@ -171,3 +171,4 @@ vertexai==1.64.0
|
|
| 171 |
yfinance==0.2.43
|
| 172 |
pywencai==0.12.2
|
| 173 |
akshare==1.14.72
|
|
|
|
|
|
| 171 |
yfinance==0.2.43
|
| 172 |
pywencai==0.12.2
|
| 173 |
akshare==1.14.72
|
| 174 |
+
ranx==0.3.20
|