#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import re

from openai.lib.azure import AzureOpenAI
from zhipuai import ZhipuAI
from dashscope import Generation
from abc import ABC
from openai import OpenAI
import openai
from ollama import Client
from rag.nlp import is_english
from rag.utils import num_tokens_from_string
from groq import Groq
import os
import json
import requests
import asyncio


class Base(ABC):
    def __init__(self, key, model_name, base_url):
        timeout = int(os.environ.get('LM_TIMEOUT_SECONDS', 600))
        self.client = OpenAI(api_key=key, base_url=base_url, timeout=timeout)
        self.model_name = model_name

    def chat(self, system, history, gen_conf):
        if system:
            history.insert(0, {"role": "system", "content": system})
        try:
            response = self.client.chat.completions.create(
                model=self.model_name,
                messages=history,
                **gen_conf)
            ans = response.choices[0].message.content.strip()
            if response.choices[0].finish_reason == "length":
                ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
                    [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
            return ans, response.usage.total_tokens
        except openai.APIError as e:
            return "**ERROR**: " + str(e), 0

    def chat_streamly(self, system, history, gen_conf):
        if system:
            history.insert(0, {"role": "system", "content": system})
        ans = ""
        total_tokens = 0
        try:
            response = self.client.chat.completions.create(
                model=self.model_name,
                messages=history,
                stream=True,
                **gen_conf)
            for resp in response:
                if not resp.choices: continue
                if not resp.choices[0].delta.content:
                    resp.choices[0].delta.content = ""
                ans += resp.choices[0].delta.content

                if not hasattr(resp, "usage") or not resp.usage:
                    total_tokens = (
                                total_tokens
                                + num_tokens_from_string(resp.choices[0].delta.content)
                        )
                elif isinstance(resp.usage, dict):
                    total_tokens = resp.usage.get("total_tokens", total_tokens)
                else: total_tokens = resp.usage.total_tokens

                if resp.choices[0].finish_reason == "length":
                    ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
                        [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
                yield ans

        except openai.APIError as e:
            yield ans + "\n**ERROR**: " + str(e)

        yield total_tokens


class GptTurbo(Base):
    def __init__(self, key, model_name="gpt-3.5-turbo", base_url="https://api.openai.com/v1"):
        if not base_url: base_url = "https://api.openai.com/v1"
        super().__init__(key, model_name, base_url)


class MoonshotChat(Base):
    def __init__(self, key, model_name="moonshot-v1-8k", base_url="https://api.moonshot.cn/v1"):
        if not base_url: base_url = "https://api.moonshot.cn/v1"
        super().__init__(key, model_name, base_url)


class XinferenceChat(Base):
    def __init__(self, key=None, model_name="", base_url=""):
        if not base_url:
            raise ValueError("Local llm url cannot be None")
        if base_url.split("/")[-1] != "v1":
            base_url = os.path.join(base_url, "v1")
        super().__init__(key, model_name, base_url)


class HuggingFaceChat(Base):
    def __init__(self, key=None, model_name="", base_url=""):
        if not base_url:
            raise ValueError("Local llm url cannot be None")
        if base_url.split("/")[-1] != "v1":
            base_url = os.path.join(base_url, "v1")
        super().__init__(key, model_name, base_url)


class DeepSeekChat(Base):
    def __init__(self, key, model_name="deepseek-chat", base_url="https://api.deepseek.com/v1"):
        if not base_url: base_url = "https://api.deepseek.com/v1"
        super().__init__(key, model_name, base_url)


class AzureChat(Base):
    def __init__(self, key, model_name, **kwargs):
        api_key = json.loads(key).get('api_key', '')
        api_version = json.loads(key).get('api_version', '2024-02-01')
        self.client = AzureOpenAI(api_key=api_key, azure_endpoint=kwargs["base_url"], api_version=api_version)
        self.model_name = model_name


class BaiChuanChat(Base):
    def __init__(self, key, model_name="Baichuan3-Turbo", base_url="https://api.baichuan-ai.com/v1"):
        if not base_url:
            base_url = "https://api.baichuan-ai.com/v1"
        super().__init__(key, model_name, base_url)

    @staticmethod
    def _format_params(params):
        return {
            "temperature": params.get("temperature", 0.3),
            "max_tokens": params.get("max_tokens", 2048),
            "top_p": params.get("top_p", 0.85),
        }

    def chat(self, system, history, gen_conf):
        if system:
            history.insert(0, {"role": "system", "content": system})
        try:
            response = self.client.chat.completions.create(
                model=self.model_name,
                messages=history,
                extra_body={
                    "tools": [{
                        "type": "web_search",
                        "web_search": {
                            "enable": True,
                            "search_mode": "performance_first"
                        }
                    }]
                },
                **self._format_params(gen_conf))
            ans = response.choices[0].message.content.strip()
            if response.choices[0].finish_reason == "length":
                ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
                    [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
            return ans, response.usage.total_tokens
        except openai.APIError as e:
            return "**ERROR**: " + str(e), 0

    def chat_streamly(self, system, history, gen_conf):
        if system:
            history.insert(0, {"role": "system", "content": system})
        ans = ""
        total_tokens = 0
        try:
            response = self.client.chat.completions.create(
                model=self.model_name,
                messages=history,
                extra_body={
                    "tools": [{
                        "type": "web_search",
                        "web_search": {
                            "enable": True,
                            "search_mode": "performance_first"
                        }
                    }]
                },
                stream=True,
                **self._format_params(gen_conf))
            for resp in response:
                if not resp.choices: continue
                if not resp.choices[0].delta.content:
                    resp.choices[0].delta.content = ""
                ans += resp.choices[0].delta.content
                total_tokens = (
                    (
                            total_tokens
                            + num_tokens_from_string(resp.choices[0].delta.content)
                    )
                    if not hasattr(resp, "usage")
                    else resp.usage["total_tokens"]
                )
                if resp.choices[0].finish_reason == "length":
                    ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
                        [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
                yield ans

        except Exception as e:
            yield ans + "\n**ERROR**: " + str(e)

        yield total_tokens


class QWenChat(Base):
    def __init__(self, key, model_name=Generation.Models.qwen_turbo, **kwargs):
        import dashscope
        dashscope.api_key = key
        self.model_name = model_name

    def chat(self, system, history, gen_conf):
        stream_flag = str(os.environ.get('QWEN_CHAT_BY_STREAM', 'true')).lower() == 'true'
        if not stream_flag:
            from http import HTTPStatus
            if system:
                history.insert(0, {"role": "system", "content": system})

            response = Generation.call(
                self.model_name,
                messages=history,
                result_format='message',
                **gen_conf
            )
            ans = ""
            tk_count = 0
            if response.status_code == HTTPStatus.OK:
                ans += response.output.choices[0]['message']['content']
                tk_count += response.usage.total_tokens
                if response.output.choices[0].get("finish_reason", "") == "length":
                    ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
                        [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
                return ans, tk_count

            return "**ERROR**: " + response.message, tk_count
        else:
            g = self._chat_streamly(system, history, gen_conf, incremental_output=True)
            result_list = list(g)
            error_msg_list = [item for item in result_list if str(item).find("**ERROR**") >= 0]
            if len(error_msg_list) > 0:
                return "**ERROR**: " + "".join(error_msg_list) , 0
            else:
                return "".join(result_list[:-1]), result_list[-1]

    def _chat_streamly(self, system, history, gen_conf, incremental_output=False):
        from http import HTTPStatus
        if system:
            history.insert(0, {"role": "system", "content": system})
        ans = ""
        tk_count = 0
        try:
            response = Generation.call(
                self.model_name,
                messages=history,
                result_format='message',
                stream=True,
                incremental_output=incremental_output,
                **gen_conf
            )
            for resp in response:
                if resp.status_code == HTTPStatus.OK:
                    ans = resp.output.choices[0]['message']['content']
                    tk_count = resp.usage.total_tokens
                    if resp.output.choices[0].get("finish_reason", "") == "length":
                        ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
                            [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
                    yield ans
                else:
                    yield ans + "\n**ERROR**: " + resp.message if not re.search(r" (key|quota)", str(resp.message).lower()) else "Out of credit. Please set the API key in **settings > Model providers.**"
        except Exception as e:
            yield ans + "\n**ERROR**: " + str(e)

        yield tk_count

    def chat_streamly(self, system, history, gen_conf):
        return self._chat_streamly(system, history, gen_conf)


class ZhipuChat(Base):
    def __init__(self, key, model_name="glm-3-turbo", **kwargs):
        self.client = ZhipuAI(api_key=key)
        self.model_name = model_name

    def chat(self, system, history, gen_conf):
        if system:
            history.insert(0, {"role": "system", "content": system})
        try:
            if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"]
            if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"]
            response = self.client.chat.completions.create(
                model=self.model_name,
                messages=history,
                **gen_conf
            )
            ans = response.choices[0].message.content.strip()
            if response.choices[0].finish_reason == "length":
                ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
                    [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
            return ans, response.usage.total_tokens
        except Exception as e:
            return "**ERROR**: " + str(e), 0

    def chat_streamly(self, system, history, gen_conf):
        if system:
            history.insert(0, {"role": "system", "content": system})
        if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"]
        if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"]
        ans = ""
        tk_count = 0
        try:
            response = self.client.chat.completions.create(
                model=self.model_name,
                messages=history,
                stream=True,
                **gen_conf
            )
            for resp in response:
                if not resp.choices[0].delta.content: continue
                delta = resp.choices[0].delta.content
                ans += delta
                if resp.choices[0].finish_reason == "length":
                    ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
                        [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
                    tk_count = resp.usage.total_tokens
                if resp.choices[0].finish_reason == "stop": tk_count = resp.usage.total_tokens
                yield ans
        except Exception as e:
            yield ans + "\n**ERROR**: " + str(e)

        yield tk_count


class OllamaChat(Base):
    def __init__(self, key, model_name, **kwargs):
        self.client = Client(host=kwargs["base_url"])
        self.model_name = model_name

    def chat(self, system, history, gen_conf):
        if system:
            history.insert(0, {"role": "system", "content": system})
        try:
            options = {}
            if "temperature" in gen_conf: options["temperature"] = gen_conf["temperature"]
            if "max_tokens" in gen_conf: options["num_predict"] = gen_conf["max_tokens"]
            if "top_p" in gen_conf: options["top_p"] = gen_conf["top_p"]
            if "presence_penalty" in gen_conf: options["presence_penalty"] = gen_conf["presence_penalty"]
            if "frequency_penalty" in gen_conf: options["frequency_penalty"] = gen_conf["frequency_penalty"]
            response = self.client.chat(
                model=self.model_name,
                messages=history,
                options=options,
                keep_alive=-1
            )
            ans = response["message"]["content"].strip()
            return ans, response.get("eval_count", 0) + response.get("prompt_eval_count", 0)
        except Exception as e:
            return "**ERROR**: " + str(e), 0

    def chat_streamly(self, system, history, gen_conf):
        if system:
            history.insert(0, {"role": "system", "content": system})
        options = {}
        if "temperature" in gen_conf: options["temperature"] = gen_conf["temperature"]
        if "max_tokens" in gen_conf: options["num_predict"] = gen_conf["max_tokens"]
        if "top_p" in gen_conf: options["top_p"] = gen_conf["top_p"]
        if "presence_penalty" in gen_conf: options["presence_penalty"] = gen_conf["presence_penalty"]
        if "frequency_penalty" in gen_conf: options["frequency_penalty"] = gen_conf["frequency_penalty"]
        ans = ""
        try:
            response = self.client.chat(
                model=self.model_name,
                messages=history,
                stream=True,
                options=options,
                keep_alive=-1
            )
            for resp in response:
                if resp["done"]:
                    yield resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0)
                ans += resp["message"]["content"]
                yield ans
        except Exception as e:
            yield ans + "\n**ERROR**: " + str(e)
        yield 0


class LocalAIChat(Base):
    def __init__(self, key, model_name, base_url):
        if not base_url:
            raise ValueError("Local llm url cannot be None")
        if base_url.split("/")[-1] != "v1":
            base_url = os.path.join(base_url, "v1")
        self.client = OpenAI(api_key="empty", base_url=base_url)
        self.model_name = model_name.split("___")[0]


class LocalLLM(Base):
    class RPCProxy:
        def __init__(self, host, port):
            self.host = host
            self.port = int(port)
            self.__conn()

        def __conn(self):
            from multiprocessing.connection import Client

            self._connection = Client(
                (self.host, self.port), authkey=b"infiniflow-token4kevinhu"
            )

        def __getattr__(self, name):
            import pickle

            def do_rpc(*args, **kwargs):
                for _ in range(3):
                    try:
                        self._connection.send(pickle.dumps((name, args, kwargs)))
                        return pickle.loads(self._connection.recv())
                    except Exception:
                        self.__conn()
                raise Exception("RPC connection lost!")

            return do_rpc

    def __init__(self, key, model_name):
        from jina import Client

        self.client = Client(port=12345, protocol="grpc", asyncio=True)

    def _prepare_prompt(self, system, history, gen_conf):
        from rag.svr.jina_server import Prompt
        if system:
            history.insert(0, {"role": "system", "content": system})
        if "max_tokens" in gen_conf:
            gen_conf["max_new_tokens"] = gen_conf.pop("max_tokens")
        return Prompt(message=history, gen_conf=gen_conf)

    def _stream_response(self, endpoint, prompt):
        from rag.svr.jina_server import Generation
        answer = ""
        try:
            res = self.client.stream_doc(
                on=endpoint, inputs=prompt, return_type=Generation
            )
            loop = asyncio.get_event_loop()
            try:
                while True:
                    answer = loop.run_until_complete(res.__anext__()).text
                    yield answer
            except StopAsyncIteration:
                pass
        except Exception as e:
            yield answer + "\n**ERROR**: " + str(e)
        yield num_tokens_from_string(answer)

    def chat(self, system, history, gen_conf):
        prompt = self._prepare_prompt(system, history, gen_conf)
        chat_gen = self._stream_response("/chat", prompt)
        ans = next(chat_gen)
        total_tokens = next(chat_gen)
        return ans, total_tokens

    def chat_streamly(self, system, history, gen_conf):
        prompt = self._prepare_prompt(system, history, gen_conf)
        return self._stream_response("/stream", prompt)


class VolcEngineChat(Base):
    def __init__(self, key, model_name, base_url='https://ark.cn-beijing.volces.com/api/v3'):
        """
        Since do not want to modify the original database fields, and the VolcEngine authentication method is quite special,
        Assemble ark_api_key, ep_id into api_key, store it as a dictionary type, and parse it for use
        model_name is for display only
        """
        base_url = base_url if base_url else 'https://ark.cn-beijing.volces.com/api/v3'
        ark_api_key = json.loads(key).get('ark_api_key', '')
        model_name = json.loads(key).get('ep_id', '') + json.loads(key).get('endpoint_id', '')
        super().__init__(ark_api_key, model_name, base_url)


class MiniMaxChat(Base):
    def __init__(
            self,
            key,
            model_name,
            base_url="https://api.minimax.chat/v1/text/chatcompletion_v2",
    ):
        if not base_url:
            base_url = "https://api.minimax.chat/v1/text/chatcompletion_v2"
        self.base_url = base_url
        self.model_name = model_name
        self.api_key = key

    def chat(self, system, history, gen_conf):
        if system:
            history.insert(0, {"role": "system", "content": system})
        for k in list(gen_conf.keys()):
            if k not in ["temperature", "top_p", "max_tokens"]:
                del gen_conf[k]
        headers = {
            "Authorization": f"Bearer {self.api_key}",
            "Content-Type": "application/json",
        }
        payload = json.dumps(
            {"model": self.model_name, "messages": history, **gen_conf}
        )
        try:
            response = requests.request(
                "POST", url=self.base_url, headers=headers, data=payload
            )
            response = response.json()
            ans = response["choices"][0]["message"]["content"].strip()
            if response["choices"][0]["finish_reason"] == "length":
                ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
                    [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
            return ans, response["usage"]["total_tokens"]
        except Exception as e:
            return "**ERROR**: " + str(e), 0

    def chat_streamly(self, system, history, gen_conf):
        if system:
            history.insert(0, {"role": "system", "content": system})
        ans = ""
        total_tokens = 0
        try:
            headers = {
                "Authorization": f"Bearer {self.api_key}",
                "Content-Type": "application/json",
            }
            payload = json.dumps(
                {
                    "model": self.model_name,
                    "messages": history,
                    "stream": True,
                    **gen_conf,
                }
            )
            response = requests.request(
                "POST",
                url=self.base_url,
                headers=headers,
                data=payload,
            )
            for resp in response.text.split("\n\n")[:-1]:
                resp = json.loads(resp[6:])
                text = ""
                if "choices" in resp and "delta" in resp["choices"][0]:
                    text = resp["choices"][0]["delta"]["content"]
                ans += text
                total_tokens = (
                    total_tokens + num_tokens_from_string(text)
                    if "usage" not in resp
                    else resp["usage"]["total_tokens"]
                )
                yield ans

        except Exception as e:
            yield ans + "\n**ERROR**: " + str(e)

        yield total_tokens


class MistralChat(Base):

    def __init__(self, key, model_name, base_url=None):
        from mistralai.client import MistralClient
        self.client = MistralClient(api_key=key)
        self.model_name = model_name

    def chat(self, system, history, gen_conf):
        if system:
            history.insert(0, {"role": "system", "content": system})
        for k in list(gen_conf.keys()):
            if k not in ["temperature", "top_p", "max_tokens"]:
                del gen_conf[k]
        try:
            response = self.client.chat(
                model=self.model_name,
                messages=history,
                **gen_conf)
            ans = response.choices[0].message.content
            if response.choices[0].finish_reason == "length":
                ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
                    [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
            return ans, response.usage.total_tokens
        except openai.APIError as e:
            return "**ERROR**: " + str(e), 0

    def chat_streamly(self, system, history, gen_conf):
        if system:
            history.insert(0, {"role": "system", "content": system})
        for k in list(gen_conf.keys()):
            if k not in ["temperature", "top_p", "max_tokens"]:
                del gen_conf[k]
        ans = ""
        total_tokens = 0
        try:
            response = self.client.chat_stream(
                model=self.model_name,
                messages=history,
                **gen_conf)
            for resp in response:
                if not resp.choices or not resp.choices[0].delta.content: continue
                ans += resp.choices[0].delta.content
                total_tokens += 1
                if resp.choices[0].finish_reason == "length":
                    ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
                        [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
                yield ans

        except openai.APIError as e:
            yield ans + "\n**ERROR**: " + str(e)

        yield total_tokens


class BedrockChat(Base):

    def __init__(self, key, model_name, **kwargs):
        import boto3
        self.bedrock_ak = json.loads(key).get('bedrock_ak', '')
        self.bedrock_sk = json.loads(key).get('bedrock_sk', '')
        self.bedrock_region = json.loads(key).get('bedrock_region', '')
        self.model_name = model_name
        self.client = boto3.client(service_name='bedrock-runtime', region_name=self.bedrock_region,
                                   aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)

    def chat(self, system, history, gen_conf):
        from botocore.exceptions import ClientError
        for k in list(gen_conf.keys()):
            if k not in ["temperature", "top_p", "max_tokens"]:
                del gen_conf[k]
        if "max_tokens" in gen_conf:
            gen_conf["maxTokens"] = gen_conf["max_tokens"]
            _ = gen_conf.pop("max_tokens")
        if "top_p" in gen_conf:
            gen_conf["topP"] = gen_conf["top_p"]
            _ = gen_conf.pop("top_p")
        for item in history:
            if not isinstance(item["content"], list) and not isinstance(item["content"], tuple):
                item["content"] = [{"text": item["content"]}]

        try:
            # Send the message to the model, using a basic inference configuration.
            response = self.client.converse(
                modelId=self.model_name,
                messages=history,
                inferenceConfig=gen_conf,
                system=[{"text": (system if system else "Answer the user's message.")}],
            )

            # Extract and print the response text.
            ans = response["output"]["message"]["content"][0]["text"]
            return ans, num_tokens_from_string(ans)

        except (ClientError, Exception) as e:
            return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0

    def chat_streamly(self, system, history, gen_conf):
        from botocore.exceptions import ClientError
        for k in list(gen_conf.keys()):
            if k not in ["temperature", "top_p", "max_tokens"]:
                del gen_conf[k]
        if "max_tokens" in gen_conf:
            gen_conf["maxTokens"] = gen_conf["max_tokens"]
            _ = gen_conf.pop("max_tokens")
        if "top_p" in gen_conf:
            gen_conf["topP"] = gen_conf["top_p"]
            _ = gen_conf.pop("top_p")
        for item in history:
            if not isinstance(item["content"], list) and not isinstance(item["content"], tuple):
                item["content"] = [{"text": item["content"]}]

        if self.model_name.split('.')[0] == 'ai21':
            try:
                response = self.client.converse(
                    modelId=self.model_name,
                    messages=history,
                    inferenceConfig=gen_conf,
                    system=[{"text": (system if system else "Answer the user's message.")}]
                )
                ans = response["output"]["message"]["content"][0]["text"]
                return ans, num_tokens_from_string(ans)

            except (ClientError, Exception) as e:
                return f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}", 0

        ans = ""
        try:
            # Send the message to the model, using a basic inference configuration.
            streaming_response = self.client.converse_stream(
                modelId=self.model_name,
                messages=history,
                inferenceConfig=gen_conf,
                system=[{"text": (system if system else "Answer the user's message.")}]
            )

            # Extract and print the streamed response text in real-time.
            for resp in streaming_response["stream"]:
                if "contentBlockDelta" in resp:
                    ans += resp["contentBlockDelta"]["delta"]["text"]
                    yield ans

        except (ClientError, Exception) as e:
            yield ans + f"ERROR: Can't invoke '{self.model_name}'. Reason: {e}"

        yield num_tokens_from_string(ans)


class GeminiChat(Base):

    def __init__(self, key, model_name, base_url=None):
        from google.generativeai import client, GenerativeModel

        client.configure(api_key=key)
        _client = client.get_default_generative_client()
        self.model_name = 'models/' + model_name
        self.model = GenerativeModel(model_name=self.model_name)
        self.model._client = _client

    def chat(self, system, history, gen_conf):
        from google.generativeai.types import content_types

        if system:
            self.model._system_instruction = content_types.to_content(system)

        if 'max_tokens' in gen_conf:
            gen_conf['max_output_tokens'] = gen_conf['max_tokens']
        for k in list(gen_conf.keys()):
            if k not in ["temperature", "top_p", "max_output_tokens"]:
                del gen_conf[k]
        for item in history:
            if 'role' in item and item['role'] == 'assistant':
                item['role'] = 'model'
            if 'role' in item and item['role'] == 'system':
                item['role'] = 'user'
            if 'content' in item:
                item['parts'] = item.pop('content')

        try:
            response = self.model.generate_content(
                history,
                generation_config=gen_conf)
            ans = response.text
            return ans, response.usage_metadata.total_token_count
        except Exception as e:
            return "**ERROR**: " + str(e), 0

    def chat_streamly(self, system, history, gen_conf):
        from google.generativeai.types import content_types

        if system:
            self.model._system_instruction = content_types.to_content(system)
        if 'max_tokens' in gen_conf:
            gen_conf['max_output_tokens'] = gen_conf['max_tokens']
        for k in list(gen_conf.keys()):
            if k not in ["temperature", "top_p", "max_output_tokens"]:
                del gen_conf[k]
        for item in history:
            if 'role' in item and item['role'] == 'assistant':
                item['role'] = 'model'
            if 'content' in item:
                item['parts'] = item.pop('content')
        ans = ""
        try:
            response = self.model.generate_content(
                history,
                generation_config=gen_conf, stream=True)
            for resp in response:
                ans += resp.text
                yield ans

            yield response._chunks[-1].usage_metadata.total_token_count
        except Exception as e:
            yield ans + "\n**ERROR**: " + str(e)

        yield 0


class GroqChat:
    def __init__(self, key, model_name, base_url=''):
        self.client = Groq(api_key=key)
        self.model_name = model_name

    def chat(self, system, history, gen_conf):
        if system:
            history.insert(0, {"role": "system", "content": system})
        for k in list(gen_conf.keys()):
            if k not in ["temperature", "top_p", "max_tokens"]:
                del gen_conf[k]
        ans = ""
        try:
            response = self.client.chat.completions.create(
                model=self.model_name,
                messages=history,
                **gen_conf
            )
            ans = response.choices[0].message.content
            if response.choices[0].finish_reason == "length":
                ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
                    [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
            return ans, response.usage.total_tokens
        except Exception as e:
            return ans + "\n**ERROR**: " + str(e), 0

    def chat_streamly(self, system, history, gen_conf):
        if system:
            history.insert(0, {"role": "system", "content": system})
        for k in list(gen_conf.keys()):
            if k not in ["temperature", "top_p", "max_tokens"]:
                del gen_conf[k]
        ans = ""
        total_tokens = 0
        try:
            response = self.client.chat.completions.create(
                model=self.model_name,
                messages=history,
                stream=True,
                **gen_conf
            )
            for resp in response:
                if not resp.choices or not resp.choices[0].delta.content:
                    continue
                ans += resp.choices[0].delta.content
                total_tokens += 1
                if resp.choices[0].finish_reason == "length":
                    ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
                        [ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
                yield ans

        except Exception as e:
            yield ans + "\n**ERROR**: " + str(e)

        yield total_tokens


## openrouter
class OpenRouterChat(Base):
    def __init__(self, key, model_name, base_url="https://openrouter.ai/api/v1"):
        if not base_url:
            base_url = "https://openrouter.ai/api/v1"
        super().__init__(key, model_name, base_url)


class StepFunChat(Base):
    def __init__(self, key, model_name, base_url="https://api.stepfun.com/v1"):
        if not base_url:
            base_url = "https://api.stepfun.com/v1"
        super().__init__(key, model_name, base_url)


class NvidiaChat(Base):
    def __init__(self, key, model_name, base_url="https://integrate.api.nvidia.com/v1"):
        if not base_url:
            base_url = "https://integrate.api.nvidia.com/v1"
        super().__init__(key, model_name, base_url)


class LmStudioChat(Base):
    def __init__(self, key, model_name, base_url):
        if not base_url:
            raise ValueError("Local llm url cannot be None")
        if base_url.split("/")[-1] != "v1":
            base_url = os.path.join(base_url, "v1")
        self.client = OpenAI(api_key="lm-studio", base_url=base_url)
        self.model_name = model_name


class OpenAI_APIChat(Base):
    def __init__(self, key, model_name, base_url):
        if not base_url:
            raise ValueError("url cannot be None")
        if base_url.split("/")[-1] != "v1":
            base_url = os.path.join(base_url, "v1")
        model_name = model_name.split("___")[0]
        super().__init__(key, model_name, base_url)


class CoHereChat(Base):
    def __init__(self, key, model_name, base_url=""):
        from cohere import Client

        self.client = Client(api_key=key)
        self.model_name = model_name

    def chat(self, system, history, gen_conf):
        if system:
            history.insert(0, {"role": "system", "content": system})
        if "top_p" in gen_conf:
            gen_conf["p"] = gen_conf.pop("top_p")
        if "frequency_penalty" in gen_conf and "presence_penalty" in gen_conf:
            gen_conf.pop("presence_penalty")
        for item in history:
            if "role" in item and item["role"] == "user":
                item["role"] = "USER"
            if "role" in item and item["role"] == "assistant":
                item["role"] = "CHATBOT"
            if "content" in item:
                item["message"] = item.pop("content")
        mes = history.pop()["message"]
        ans = ""
        try:
            response = self.client.chat(
                model=self.model_name, chat_history=history, message=mes, **gen_conf
            )
            ans = response.text
            if response.finish_reason == "MAX_TOKENS":
                ans += (
                    "...\nFor the content length reason, it stopped, continue?"
                    if is_english([ans])
                    else "······\n由于长度的原因,回答被截断了,要继续吗?"
                )
            return (
                ans,
                response.meta.tokens.input_tokens + response.meta.tokens.output_tokens,
            )
        except Exception as e:
            return ans + "\n**ERROR**: " + str(e), 0

    def chat_streamly(self, system, history, gen_conf):
        if system:
            history.insert(0, {"role": "system", "content": system})
        if "top_p" in gen_conf:
            gen_conf["p"] = gen_conf.pop("top_p")
        if "frequency_penalty" in gen_conf and "presence_penalty" in gen_conf:
            gen_conf.pop("presence_penalty")
        for item in history:
            if "role" in item and item["role"] == "user":
                item["role"] = "USER"
            if "role" in item and item["role"] == "assistant":
                item["role"] = "CHATBOT"
            if "content" in item:
                item["message"] = item.pop("content")
        mes = history.pop()["message"]
        ans = ""
        total_tokens = 0
        try:
            response = self.client.chat_stream(
                model=self.model_name, chat_history=history, message=mes, **gen_conf
            )
            for resp in response:
                if resp.event_type == "text-generation":
                    ans += resp.text
                    total_tokens += num_tokens_from_string(resp.text)
                elif resp.event_type == "stream-end":
                    if resp.finish_reason == "MAX_TOKENS":
                        ans += (
                            "...\nFor the content length reason, it stopped, continue?"
                            if is_english([ans])
                            else "······\n由于长度的原因,回答被截断了,要继续吗?"
                        )
                yield ans

        except Exception as e:
            yield ans + "\n**ERROR**: " + str(e)

        yield total_tokens


class LeptonAIChat(Base):
    def __init__(self, key, model_name, base_url=None):
        if not base_url:
            base_url = os.path.join("https://" + model_name + ".lepton.run", "api", "v1")
        super().__init__(key, model_name, base_url)


class TogetherAIChat(Base):
    def __init__(self, key, model_name, base_url="https://api.together.xyz/v1"):
        if not base_url:
            base_url = "https://api.together.xyz/v1"
        super().__init__(key, model_name, base_url)


class PerfXCloudChat(Base):
    def __init__(self, key, model_name, base_url="https://cloud.perfxlab.cn/v1"):
        if not base_url:
            base_url = "https://cloud.perfxlab.cn/v1"
        super().__init__(key, model_name, base_url)


class UpstageChat(Base):
    def __init__(self, key, model_name, base_url="https://api.upstage.ai/v1/solar"):
        if not base_url:
            base_url = "https://api.upstage.ai/v1/solar"
        super().__init__(key, model_name, base_url)


class NovitaAIChat(Base):
    def __init__(self, key, model_name, base_url="https://api.novita.ai/v3/openai"):
        if not base_url:
            base_url = "https://api.novita.ai/v3/openai"
        super().__init__(key, model_name, base_url)


class SILICONFLOWChat(Base):
    def __init__(self, key, model_name, base_url="https://api.siliconflow.cn/v1"):
        if not base_url:
            base_url = "https://api.siliconflow.cn/v1"
        super().__init__(key, model_name, base_url)


class YiChat(Base):
    def __init__(self, key, model_name, base_url="https://api.lingyiwanwu.com/v1"):
        if not base_url:
            base_url = "https://api.lingyiwanwu.com/v1"
        super().__init__(key, model_name, base_url)


class ReplicateChat(Base):
    def __init__(self, key, model_name, base_url=None):
        from replicate.client import Client

        self.model_name = model_name
        self.client = Client(api_token=key)
        self.system = ""

    def chat(self, system, history, gen_conf):
        if "max_tokens" in gen_conf:
            gen_conf["max_new_tokens"] = gen_conf.pop("max_tokens")
        if system:
            self.system = system
        prompt = "\n".join(
            [item["role"] + ":" + item["content"] for item in history[-5:]]
        )
        ans = ""
        try:
            response = self.client.run(
                self.model_name,
                input={"system_prompt": self.system, "prompt": prompt, **gen_conf},
            )
            ans = "".join(response)
            return ans, num_tokens_from_string(ans)
        except Exception as e:
            return ans + "\n**ERROR**: " + str(e), 0

    def chat_streamly(self, system, history, gen_conf):
        if "max_tokens" in gen_conf:
            gen_conf["max_new_tokens"] = gen_conf.pop("max_tokens")
        if system:
            self.system = system
        prompt = "\n".join(
            [item["role"] + ":" + item["content"] for item in history[-5:]]
        )
        ans = ""
        try:
            response = self.client.run(
                self.model_name,
                input={"system_prompt": self.system, "prompt": prompt, **gen_conf},
            )
            for resp in response:
                ans += resp
                yield ans

        except Exception as e:
            yield ans + "\n**ERROR**: " + str(e)

        yield num_tokens_from_string(ans)


class HunyuanChat(Base):
    def __init__(self, key, model_name, base_url=None):
        from tencentcloud.common import credential
        from tencentcloud.hunyuan.v20230901 import hunyuan_client

        key = json.loads(key)
        sid = key.get("hunyuan_sid", "")
        sk = key.get("hunyuan_sk", "")
        cred = credential.Credential(sid, sk)
        self.model_name = model_name
        self.client = hunyuan_client.HunyuanClient(cred, "")

    def chat(self, system, history, gen_conf):
        from tencentcloud.hunyuan.v20230901 import models
        from tencentcloud.common.exception.tencent_cloud_sdk_exception import (
            TencentCloudSDKException,
        )

        _gen_conf = {}
        _history = [{k.capitalize(): v for k, v in item.items()} for item in history]
        if system:
            _history.insert(0, {"Role": "system", "Content": system})
        if "temperature" in gen_conf:
            _gen_conf["Temperature"] = gen_conf["temperature"]
        if "top_p" in gen_conf:
            _gen_conf["TopP"] = gen_conf["top_p"]

        req = models.ChatCompletionsRequest()
        params = {"Model": self.model_name, "Messages": _history, **_gen_conf}
        req.from_json_string(json.dumps(params))
        ans = ""
        try:
            response = self.client.ChatCompletions(req)
            ans = response.Choices[0].Message.Content
            return ans, response.Usage.TotalTokens
        except TencentCloudSDKException as e:
            return ans + "\n**ERROR**: " + str(e), 0

    def chat_streamly(self, system, history, gen_conf):
        from tencentcloud.hunyuan.v20230901 import models
        from tencentcloud.common.exception.tencent_cloud_sdk_exception import (
            TencentCloudSDKException,
        )

        _gen_conf = {}
        _history = [{k.capitalize(): v for k, v in item.items()} for item in history]
        if system:
            _history.insert(0, {"Role": "system", "Content": system})

        if "temperature" in gen_conf:
            _gen_conf["Temperature"] = gen_conf["temperature"]
        if "top_p" in gen_conf:
            _gen_conf["TopP"] = gen_conf["top_p"]
        req = models.ChatCompletionsRequest()
        params = {
            "Model": self.model_name,
            "Messages": _history,
            "Stream": True,
            **_gen_conf,
        }
        req.from_json_string(json.dumps(params))
        ans = ""
        total_tokens = 0
        try:
            response = self.client.ChatCompletions(req)
            for resp in response:
                resp = json.loads(resp["data"])
                if not resp["Choices"] or not resp["Choices"][0]["Delta"]["Content"]:
                    continue
                ans += resp["Choices"][0]["Delta"]["Content"]
                total_tokens += 1

                yield ans

        except TencentCloudSDKException as e:
            yield ans + "\n**ERROR**: " + str(e)

        yield total_tokens


class SparkChat(Base):
    def __init__(
            self, key, model_name, base_url="https://spark-api-open.xf-yun.com/v1"
    ):
        if not base_url:
            base_url = "https://spark-api-open.xf-yun.com/v1"
        model2version = {
            "Spark-Max": "generalv3.5",
            "Spark-Lite": "general",
            "Spark-Pro": "generalv3",
            "Spark-Pro-128K": "pro-128k",
            "Spark-4.0-Ultra": "4.0Ultra",
        }
        version2model = {v: k for k, v in model2version.items()}
        assert model_name in model2version or model_name in version2model, f"The given model name is not supported yet. Support: {list(model2version.keys())}"
        if model_name in model2version:
            model_version = model2version[model_name]
        else: model_version = model_name
        super().__init__(key, model_version, base_url)


class BaiduYiyanChat(Base):
    def __init__(self, key, model_name, base_url=None):
        import qianfan

        key = json.loads(key)
        ak = key.get("yiyan_ak", "")
        sk = key.get("yiyan_sk", "")
        self.client = qianfan.ChatCompletion(ak=ak, sk=sk)
        self.model_name = model_name.lower()
        self.system = ""

    def chat(self, system, history, gen_conf):
        if system:
            self.system = system
        gen_conf["penalty_score"] = (
                                            (gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty",
                                                                                                0)) / 2
                                    ) + 1
        if "max_tokens" in gen_conf:
            gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
        ans = ""

        try:
            response = self.client.do(
                model=self.model_name,
                messages=history,
                system=self.system,
                **gen_conf
            ).body
            ans = response['result']
            return ans, response["usage"]["total_tokens"]

        except Exception as e:
            return ans + "\n**ERROR**: " + str(e), 0

    def chat_streamly(self, system, history, gen_conf):
        if system:
            self.system = system
        gen_conf["penalty_score"] = (
                                            (gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty",
                                                                                                0)) / 2
                                    ) + 1
        if "max_tokens" in gen_conf:
            gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
        ans = ""
        total_tokens = 0

        try:
            response = self.client.do(
                model=self.model_name,
                messages=history,
                system=self.system,
                stream=True,
                **gen_conf
            )
            for resp in response:
                resp = resp.body
                ans += resp['result']
                total_tokens = resp["usage"]["total_tokens"]

                yield ans

        except Exception as e:
            return ans + "\n**ERROR**: " + str(e), 0

        yield total_tokens


class AnthropicChat(Base):
    def __init__(self, key, model_name, base_url=None):
        import anthropic

        self.client = anthropic.Anthropic(api_key=key)
        self.model_name = model_name
        self.system = ""

    def chat(self, system, history, gen_conf):
        if system:
            self.system = system
        if "max_tokens" not in gen_conf:
            gen_conf["max_tokens"] = 4096
        if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"]
        if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"]

        ans = ""
        try:
            response = self.client.messages.create(
                model=self.model_name,
                messages=history,
                system=self.system,
                stream=False,
                **gen_conf,
            ).to_dict()
            ans = response["content"][0]["text"]
            if response["stop_reason"] == "max_tokens":
                ans += (
                    "...\nFor the content length reason, it stopped, continue?"
                    if is_english([ans])
                    else "······\n由于长度的原因,回答被截断了,要继续吗?"
                )
            return (
                ans,
                response["usage"]["input_tokens"] + response["usage"]["output_tokens"],
            )
        except Exception as e:
            return ans + "\n**ERROR**: " + str(e), 0

    def chat_streamly(self, system, history, gen_conf):
        if system:
            self.system = system
        if "max_tokens" not in gen_conf:
            gen_conf["max_tokens"] = 4096
        if "presence_penalty" in gen_conf: del gen_conf["presence_penalty"]
        if "frequency_penalty" in gen_conf: del gen_conf["frequency_penalty"]

        ans = ""
        total_tokens = 0
        try:
            response = self.client.messages.create(
                model=self.model_name,
                messages=history,
                system=self.system,
                stream=True,
                **gen_conf,
            )
            for res in response.iter_lines():
                if res.type == 'content_block_delta':
                    text = res.delta.text
                    ans += text
                    total_tokens += num_tokens_from_string(text)
                    yield ans
        except Exception as e:
            yield ans + "\n**ERROR**: " + str(e)

        yield total_tokens


class GoogleChat(Base):
    def __init__(self, key, model_name, base_url=None):
        from google.oauth2 import service_account
        import base64

        key = json.load(key)
        access_token = json.loads(
            base64.b64decode(key.get("google_service_account_key", ""))
        )
        project_id = key.get("google_project_id", "")
        region = key.get("google_region", "")

        scopes = ["https://www.googleapis.com/auth/cloud-platform"]
        self.model_name = model_name
        self.system = ""

        if "claude" in self.model_name:
            from anthropic import AnthropicVertex
            from google.auth.transport.requests import Request

            if access_token:
                credits = service_account.Credentials.from_service_account_info(
                    access_token, scopes=scopes
                )
                request = Request()
                credits.refresh(request)
                token = credits.token
                self.client = AnthropicVertex(
                    region=region, project_id=project_id, access_token=token
                )
            else:
                self.client = AnthropicVertex(region=region, project_id=project_id)
        else:
            from google.cloud import aiplatform
            import vertexai.generative_models as glm

            if access_token:
                credits = service_account.Credentials.from_service_account_info(
                    access_token
                )
                aiplatform.init(
                    credentials=credits, project=project_id, location=region
                )
            else:
                aiplatform.init(project=project_id, location=region)
            self.client = glm.GenerativeModel(model_name=self.model_name)

    def chat(self, system, history, gen_conf):
        if system:
            self.system = system

        if "claude" in self.model_name:
            if "max_tokens" not in gen_conf:
                gen_conf["max_tokens"] = 4096
            try:
                response = self.client.messages.create(
                    model=self.model_name,
                    messages=history,
                    system=self.system,
                    stream=False,
                    **gen_conf,
                ).json()
                ans = response["content"][0]["text"]
                if response["stop_reason"] == "max_tokens":
                    ans += (
                        "...\nFor the content length reason, it stopped, continue?"
                        if is_english([ans])
                        else "······\n由于长度的原因,回答被截断了,要继续吗?"
                    )
                return (
                    ans,
                    response["usage"]["input_tokens"]
                    + response["usage"]["output_tokens"],
                )
            except Exception as e:
                return "\n**ERROR**: " + str(e), 0
        else:
            self.client._system_instruction = self.system
            if "max_tokens" in gen_conf:
                gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
            for k in list(gen_conf.keys()):
                if k not in ["temperature", "top_p", "max_output_tokens"]:
                    del gen_conf[k]
            for item in history:
                if "role" in item and item["role"] == "assistant":
                    item["role"] = "model"
                if "content" in item:
                    item["parts"] = item.pop("content")
            try:
                response = self.client.generate_content(
                    history, generation_config=gen_conf
                )
                ans = response.text
                return ans, response.usage_metadata.total_token_count
            except Exception as e:
                return "**ERROR**: " + str(e), 0

    def chat_streamly(self, system, history, gen_conf):
        if system:
            self.system = system

        if "claude" in self.model_name:
            if "max_tokens" not in gen_conf:
                gen_conf["max_tokens"] = 4096
            ans = ""
            total_tokens = 0
            try:
                response = self.client.messages.create(
                    model=self.model_name,
                    messages=history,
                    system=self.system,
                    stream=True,
                    **gen_conf,
                )
                for res in response.iter_lines():
                    res = res.decode("utf-8")
                    if "content_block_delta" in res and "data" in res:
                        text = json.loads(res[6:])["delta"]["text"]
                        ans += text
                        total_tokens += num_tokens_from_string(text)
            except Exception as e:
                yield ans + "\n**ERROR**: " + str(e)

            yield total_tokens
        else:
            self.client._system_instruction = self.system
            if "max_tokens" in gen_conf:
                gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
            for k in list(gen_conf.keys()):
                if k not in ["temperature", "top_p", "max_output_tokens"]:
                    del gen_conf[k]
            for item in history:
                if "role" in item and item["role"] == "assistant":
                    item["role"] = "model"
                if "content" in item:
                    item["parts"] = item.pop("content")
            ans = ""
            try:
                response = self.model.generate_content(
                    history, generation_config=gen_conf, stream=True
                )
                for resp in response:
                    ans += resp.text
                    yield ans

            except Exception as e:
                yield ans + "\n**ERROR**: " + str(e)

            yield response._chunks[-1].usage_metadata.total_token_count