#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#

import logging
import re
import json
from dataclasses import dataclass

from rag.utils import rmSpace
from rag.nlp import rag_tokenizer, query
import numpy as np
from rag.utils.doc_store_conn import DocStoreConnection, MatchDenseExpr, FusionExpr, OrderByExpr


def index_name(uid): return f"ragflow_{uid}"


class Dealer:
    def __init__(self, dataStore: DocStoreConnection):
        self.qryr = query.FulltextQueryer()
        self.dataStore = dataStore

    @dataclass
    class SearchResult:
        total: int
        ids: list[str]
        query_vector: list[float] | None = None
        field: dict | None = None
        highlight: dict | None = None
        aggregation: list | dict | None = None
        keywords: list[str] | None = None
        group_docs: list[list] | None = None

    def get_vector(self, txt, emb_mdl, topk=10, similarity=0.1):
        qv, _ = emb_mdl.encode_queries(txt)
        embedding_data = [float(v) for v in qv]
        vector_column_name = f"q_{len(embedding_data)}_vec"
        return MatchDenseExpr(vector_column_name, embedding_data, 'float', 'cosine', topk, {"similarity": similarity})

    def get_filters(self, req):
        condition = dict()
        for key, field in {"kb_ids": "kb_id", "doc_ids": "doc_id"}.items():
            if key in req and req[key] is not None:
                condition[field] = req[key]
        # TODO(yzc): `available_int` is nullable however infinity doesn't support nullable columns.
        for key in ["knowledge_graph_kwd"]:
            if key in req and req[key] is not None:
                condition[key] = req[key]
        return condition

    def search(self, req, idx_names: str | list[str], kb_ids: list[str], emb_mdl=None, highlight = False):
        filters = self.get_filters(req)
        orderBy = OrderByExpr()

        pg = int(req.get("page", 1)) - 1
        topk = int(req.get("topk", 1024))
        ps = int(req.get("size", topk))
        offset, limit = pg * ps, (pg + 1) * ps

        src = req.get("fields", ["docnm_kwd", "content_ltks", "kb_id", "img_id", "title_tks", "important_kwd",
                                 "doc_id", "position_list", "knowledge_graph_kwd",
                                 "available_int", "content_with_weight"])
        kwds = set([])

        qst = req.get("question", "")
        q_vec = []
        if not qst:
            if req.get("sort"):
                orderBy.desc("create_timestamp_flt")
            res = self.dataStore.search(src, [], filters, [], orderBy, offset, limit, idx_names, kb_ids)
            total=self.dataStore.getTotal(res)
            logging.debug("Dealer.search TOTAL: {}".format(total))
        else:
            highlightFields = ["content_ltks", "title_tks"] if highlight else []
            matchText, keywords = self.qryr.question(qst, min_match=0.3)
            if emb_mdl is None:
                matchExprs = [matchText]
                res = self.dataStore.search(src, highlightFields, filters, matchExprs, orderBy, offset, limit, idx_names, kb_ids)
                total=self.dataStore.getTotal(res)
                logging.debug("Dealer.search TOTAL: {}".format(total))
            else:
                matchDense = self.get_vector(qst, emb_mdl, topk, req.get("similarity", 0.1))
                q_vec = matchDense.embedding_data
                src.append(f"q_{len(q_vec)}_vec")

                fusionExpr = FusionExpr("weighted_sum", topk, {"weights": "0.05, 0.95"})
                matchExprs = [matchText, matchDense, fusionExpr]

                res = self.dataStore.search(src, highlightFields, filters, matchExprs, orderBy, offset, limit, idx_names, kb_ids)
                total=self.dataStore.getTotal(res)
                logging.debug("Dealer.search TOTAL: {}".format(total))

                # If result is empty, try again with lower min_match
                if total == 0:
                    matchText, _ = self.qryr.question(qst, min_match=0.1)
                    filters.pop("doc_ids", None)
                    matchDense.extra_options["similarity"] = 0.17
                    res = self.dataStore.search(src, highlightFields, filters, [matchText, matchDense, fusionExpr], orderBy, offset, limit, idx_names, kb_ids)
                    total=self.dataStore.getTotal(res)
                    logging.debug("Dealer.search 2 TOTAL: {}".format(total))

            for k in keywords:
                kwds.add(k)
                for kk in rag_tokenizer.fine_grained_tokenize(k).split(" "):
                    if len(kk) < 2:
                        continue
                    if kk in kwds:
                        continue
                    kwds.add(kk)

        logging.debug(f"TOTAL: {total}")
        ids=self.dataStore.getChunkIds(res)
        keywords=list(kwds)
        highlight = self.dataStore.getHighlight(res, keywords, "content_with_weight")
        aggs = self.dataStore.getAggregation(res, "docnm_kwd")
        return self.SearchResult(
            total=total,
            ids=ids,
            query_vector=q_vec,
            aggregation=aggs,
            highlight=highlight,
            field=self.dataStore.getFields(res, src),
            keywords=keywords
        )

    @staticmethod
    def trans2floats(txt):
        return [float(t) for t in txt.split("\t")]

    def insert_citations(self, answer, chunks, chunk_v,
                         embd_mdl, tkweight=0.1, vtweight=0.9):
        assert len(chunks) == len(chunk_v)
        if not chunks:
            return answer, set([])
        pieces = re.split(r"(```)", answer)
        if len(pieces) >= 3:
            i = 0
            pieces_ = []
            while i < len(pieces):
                if pieces[i] == "```":
                    st = i
                    i += 1
                    while i < len(pieces) and pieces[i] != "```":
                        i += 1
                    if i < len(pieces):
                        i += 1
                    pieces_.append("".join(pieces[st: i]) + "\n")
                else:
                    pieces_.extend(
                        re.split(
                            r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])",
                            pieces[i]))
                    i += 1
            pieces = pieces_
        else:
            pieces = re.split(r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])", answer)
        for i in range(1, len(pieces)):
            if re.match(r"([^\|][;。?!!\n]|[a-z][.?;!][ \n])", pieces[i]):
                pieces[i - 1] += pieces[i][0]
                pieces[i] = pieces[i][1:]
        idx = []
        pieces_ = []
        for i, t in enumerate(pieces):
            if len(t) < 5:
                continue
            idx.append(i)
            pieces_.append(t)
        logging.debug("{} => {}".format(answer, pieces_))
        if not pieces_:
            return answer, set([])

        ans_v, _ = embd_mdl.encode(pieces_)
        assert len(ans_v[0]) == len(chunk_v[0]), "The dimension of query and chunk do not match: {} vs. {}".format(
                len(ans_v[0]), len(chunk_v[0]))

        chunks_tks = [rag_tokenizer.tokenize(self.qryr.rmWWW(ck)).split(" ")
                      for ck in chunks]
        cites = {}
        thr = 0.63
        while thr>0.3 and len(cites.keys()) == 0 and pieces_ and chunks_tks:
            for i, a in enumerate(pieces_):
                sim, tksim, vtsim = self.qryr.hybrid_similarity(ans_v[i],
                                                                chunk_v,
                                                                rag_tokenizer.tokenize(
                                                                    self.qryr.rmWWW(pieces_[i])).split(" "),
                                                                chunks_tks,
                                                                tkweight, vtweight)
                mx = np.max(sim) * 0.99
                logging.debug("{} SIM: {}".format(pieces_[i], mx))
                if mx < thr:
                    continue
                cites[idx[i]] = list(
                    set([str(ii) for ii in range(len(chunk_v)) if sim[ii] > mx]))[:4]
            thr *= 0.8

        res = ""
        seted = set([])
        for i, p in enumerate(pieces):
            res += p
            if i not in idx:
                continue
            if i not in cites:
                continue
            for c in cites[i]:
                assert int(c) < len(chunk_v)
            for c in cites[i]:
                if c in seted:
                    continue
                res += f" ##{c}$$"
                seted.add(c)

        return res, seted

    def rerank(self, sres, query, tkweight=0.3,
               vtweight=0.7, cfield="content_ltks"):
        _, keywords = self.qryr.question(query)
        vector_size = len(sres.query_vector)
        vector_column = f"q_{vector_size}_vec"
        zero_vector = [0.0] * vector_size
        ins_embd = []
        for chunk_id in sres.ids:
            vector = sres.field[chunk_id].get(vector_column, zero_vector)
            if isinstance(vector, str):
                vector = [float(v) for v in vector.split("\t")]
            ins_embd.append(vector)
        if not ins_embd:
            return [], [], []

        for i in sres.ids:
            if isinstance(sres.field[i].get("important_kwd", []), str):
                sres.field[i]["important_kwd"] = [sres.field[i]["important_kwd"]]
        ins_tw = []
        for i in sres.ids:
            content_ltks = sres.field[i][cfield].split(" ")
            title_tks = [t for t in sres.field[i].get("title_tks", "").split(" ") if t]
            important_kwd = sres.field[i].get("important_kwd", [])
            tks = content_ltks + title_tks + important_kwd
            ins_tw.append(tks)

        sim, tksim, vtsim = self.qryr.hybrid_similarity(sres.query_vector,
                                                        ins_embd,
                                                        keywords,
                                                        ins_tw, tkweight, vtweight)
        return sim, tksim, vtsim

    def rerank_by_model(self, rerank_mdl, sres, query, tkweight=0.3,
               vtweight=0.7, cfield="content_ltks"):
        _, keywords = self.qryr.question(query)

        for i in sres.ids:
            if isinstance(sres.field[i].get("important_kwd", []), str):
                sres.field[i]["important_kwd"] = [sres.field[i]["important_kwd"]]
        ins_tw = []
        for i in sres.ids:
            content_ltks = sres.field[i][cfield].split(" ")
            title_tks = [t for t in sres.field[i].get("title_tks", "").split(" ") if t]
            important_kwd = sres.field[i].get("important_kwd", [])
            tks = content_ltks + title_tks + important_kwd
            ins_tw.append(tks)

        tksim = self.qryr.token_similarity(keywords, ins_tw)
        vtsim,_ = rerank_mdl.similarity(query, [rmSpace(" ".join(tks)) for tks in ins_tw])

        return tkweight*np.array(tksim) + vtweight*vtsim, tksim, vtsim

    def hybrid_similarity(self, ans_embd, ins_embd, ans, inst):
        return self.qryr.hybrid_similarity(ans_embd,
                                           ins_embd,
                                           rag_tokenizer.tokenize(ans).split(" "),
                                           rag_tokenizer.tokenize(inst).split(" "))

    def retrieval(self, question, embd_mdl, tenant_ids, kb_ids, page, page_size, similarity_threshold=0.2,
                  vector_similarity_weight=0.3, top=1024, doc_ids=None, aggs=True, rerank_mdl=None, highlight=False):
        ranks = {"total": 0, "chunks": [], "doc_aggs": {}}
        if not question:
            return ranks

        RERANK_PAGE_LIMIT = 3
        req = {"kb_ids": kb_ids, "doc_ids": doc_ids, "size": max(page_size*RERANK_PAGE_LIMIT, 128),
               "question": question, "vector": True, "topk": top,
               "similarity": similarity_threshold,
               "available_int": 1}

        if page > RERANK_PAGE_LIMIT:
            req["page"] = page
            req["size"] = page_size

        if isinstance(tenant_ids, str):
            tenant_ids = tenant_ids.split(",")

        sres = self.search(req, [index_name(tid) for tid in tenant_ids], kb_ids, embd_mdl, highlight)
        ranks["total"] = sres.total

        if page <= RERANK_PAGE_LIMIT:
            if rerank_mdl:
                sim, tsim, vsim = self.rerank_by_model(rerank_mdl,
                    sres, question, 1 - vector_similarity_weight, vector_similarity_weight)
            else:
                sim, tsim, vsim = self.rerank(
                    sres, question, 1 - vector_similarity_weight, vector_similarity_weight)
            idx = np.argsort(sim * -1)[(page-1)*page_size:page*page_size]
        else:
            sim = tsim = vsim = [1]*len(sres.ids)
            idx = list(range(len(sres.ids)))

        dim = len(sres.query_vector)
        vector_column = f"q_{dim}_vec"
        zero_vector = [0.0] * dim
        for i in idx:
            if sim[i] < similarity_threshold:
                break
            if len(ranks["chunks"]) >= page_size:
                if aggs:
                    continue
                break
            id = sres.ids[i]
            chunk = sres.field[id]
            dnm = chunk["docnm_kwd"]
            did = chunk["doc_id"]
            position_list = chunk.get("position_list", "[]")
            if not position_list:
                position_list = "[]"
            d = {
                "chunk_id": id,
                "content_ltks": chunk["content_ltks"],
                "content_with_weight": chunk["content_with_weight"],
                "doc_id": chunk["doc_id"],
                "docnm_kwd": dnm,
                "kb_id": chunk["kb_id"],
                "important_kwd": chunk.get("important_kwd", []),
                "image_id": chunk.get("img_id", ""),
                "similarity": sim[i],
                "vector_similarity": vsim[i],
                "term_similarity": tsim[i],
                "vector": chunk.get(vector_column, zero_vector),
                "positions": json.loads(position_list)
            }
            if highlight:
                if id in sres.highlight:
                    d["highlight"] = rmSpace(sres.highlight[id])
                else:
                    d["highlight"] = d["content_with_weight"]
            ranks["chunks"].append(d)
            if dnm not in ranks["doc_aggs"]:
                ranks["doc_aggs"][dnm] = {"doc_id": did, "count": 0}
            ranks["doc_aggs"][dnm]["count"] += 1
        ranks["doc_aggs"] = [{"doc_name": k,
                              "doc_id": v["doc_id"],
                              "count": v["count"]} for k,
                             v in sorted(ranks["doc_aggs"].items(),
                                         key=lambda x:x[1]["count"] * -1)]

        return ranks

    def sql_retrieval(self, sql, fetch_size=128, format="json"):
        tbl = self.dataStore.sql(sql, fetch_size, format)
        return tbl

    def chunk_list(self, doc_id: str, tenant_id: str, kb_ids: list[str], max_count=1024, fields=["docnm_kwd", "content_with_weight", "img_id"]):
        condition = {"doc_id": doc_id}
        res = self.dataStore.search(fields, [], condition, [], OrderByExpr(), 0, max_count, index_name(tenant_id), kb_ids)
        dict_chunks = self.dataStore.getFields(res, fields)
        return dict_chunks.values()