<div align="center">
<a href="https://demo.ragflow.io/">
<img src="web/src/assets/logo-with-text.png" width="520" alt="ragflow logo">
</a>
</div>

<p align="center">
  <a href="./README.md">English</a> |
  <a href="./README_zh.md">简体中文</a> |
  <a href="./README_ja.md">日本語</a> |
  <a href="./README_ko.md">한국어</a>
</p>

<p align="center">
    <a href="https://github.com/infiniflow/ragflow/releases/latest">
        <img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">
    </a>
    <a href="https://demo.ragflow.io" target="_blank">
        <img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99"></a>
    <a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">
        <img src="https://img.shields.io/badge/docker_pull-ragflow:v0.12.0-brightgreen" alt="docker pull infiniflow/ragflow:v0.12.0"></a>
    <a href="https://github.com/infiniflow/ragflow/blob/main/LICENSE">
    <img height="21" src="https://img.shields.io/badge/License-Apache--2.0-ffffff?labelColor=d4eaf7&color=2e6cc4" alt="license">
  </a>
</p>

<h4 align="center">
  <a href="https://ragflow.io/docs/dev/">Document</a> |
  <a href="https://github.com/infiniflow/ragflow/issues/162">Roadmap</a> |
  <a href="https://twitter.com/infiniflowai">Twitter</a> |
  <a href="https://discord.gg/4XxujFgUN7">Discord</a> |
  <a href="https://demo.ragflow.io">Demo</a>
</h4>

<details open>
<summary></b>📕 Table of Contents</b></summary>
  
- 💡 [What is RAGFlow?](#-what-is-ragflow)
- 🎮 [Demo](#-demo)
- 📌 [Latest Updates](#-latest-updates)
- 🌟 [Key Features](#-key-features)
- 🔎 [System Architecture](#-system-architecture)
- 🎬 [Get Started](#-get-started)
- 🔧 [Configurations](#-configurations)
- 🔧 [Build a docker image without embedding models](#-build-the-docker-image-without-embedding-models)
- 🔧 [Build a docker image including embedding models](#-build-the-docker-image-including-embedding-models)
- 🔨 [Launch service from source for development](#-launch-service-from-source-for-development)
- 📚 [Documentation](#-documentation)
- 📜 [Roadmap](#-roadmap)
- 🏄 [Community](#-community)
- 🙌 [Contributing](#-contributing)

</details>

## 💡 What is RAGFlow?

[RAGFlow](https://ragflow.io/) is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding. It offers a streamlined RAG workflow for businesses of any scale, combining LLM (Large Language Models) to provide truthful question-answering capabilities, backed by well-founded citations from various complex formatted data.

## 🎮 Demo

Try our demo at [https://demo.ragflow.io](https://demo.ragflow.io).
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/7248/2f6baa3e-1092-4f11-866d-36f6a9d075e5" width="1200"/>
<img src="https://github.com/infiniflow/ragflow/assets/12318111/b083d173-dadc-4ea9-bdeb-180d7df514eb" width="1200"/>
</div>


## 🔥 Latest Updates

- 2024-09-29 Optimizes multi-round conversations.
- 2024-09-13 Adds search mode for knowledge base Q&A.
- 2024-09-09 Adds a medical consultant agent template.
- 2024-08-22 Support text to SQL statements through RAG.
- 2024-08-02 Supports GraphRAG inspired by [graphrag](https://github.com/microsoft/graphrag) and mind map.

## 🎉 Stay Tuned
⭐️ Star our repository to stay up-to-date with exciting new features and improvements! Get instant notifications for new releases! 🌟
<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/user-attachments/assets/18c9707e-b8aa-4caf-a154-037089c105ba" width="1200"/>
</div>

## 🌟 Key Features

### 🍭 **"Quality in, quality out"**

- [Deep document understanding](./deepdoc/README.md)-based knowledge extraction from unstructured data with complicated formats.
- Finds "needle in a data haystack" of literally unlimited tokens.

### 🍱 **Template-based chunking**

- Intelligent and explainable.
- Plenty of template options to choose from.

### 🌱 **Grounded citations with reduced hallucinations**

- Visualization of text chunking to allow human intervention.
- Quick view of the key references and traceable citations to support grounded answers.

### 🍔 **Compatibility with heterogeneous data sources**

- Supports Word, slides, excel, txt, images, scanned copies, structured data, web pages, and more.

### 🛀 **Automated and effortless RAG workflow**

- Streamlined RAG orchestration catered to both personal and large businesses.
- Configurable LLMs as well as embedding models.
- Multiple recall paired with fused re-ranking.
- Intuitive APIs for seamless integration with business.

## 🔎 System Architecture

<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/d6ac5664-c237-4200-a7c2-a4a00691b485" width="1000"/>
</div>

## 🎬 Get Started

### 📝 Prerequisites

- CPU >= 4 cores
- RAM >= 16 GB
- Disk >= 50 GB
- Docker >= 24.0.0 & Docker Compose >= v2.26.1
  > If you have not installed Docker on your local machine (Windows, Mac, or Linux), see [Install Docker Engine](https://docs.docker.com/engine/install/).

### 🚀 Start up the server

1. Ensure `vm.max_map_count` >= 262144:

   > To check the value of `vm.max_map_count`:
   >
   > ```bash
   > $ sysctl vm.max_map_count
   > ```
   >
   > Reset `vm.max_map_count` to a value at least 262144 if it is not.
   >
   > ```bash
   > # In this case, we set it to 262144:
   > $ sudo sysctl -w vm.max_map_count=262144
   > ```
   >
   > This change will be reset after a system reboot. To ensure your change remains permanent, add or update the `vm.max_map_count` value in **/etc/sysctl.conf** accordingly:
   >
   > ```bash
   > vm.max_map_count=262144
   > ```

2. Clone the repo:

   ```bash
   $ git clone https://github.com/infiniflow/ragflow.git
   ```

3. Build the pre-built Docker images and start up the server:
   > Running the following commands automatically downloads the *dev* version RAGFlow Docker image. To download and run a specified Docker version, update `RAGFLOW_IMAGE` in **docker/.env** to the intended version, for example `RAGFLOW_IMAGE=infiniflow/ragflow:v0.12.0`, before running the following commands.

   ```bash
   $ cd ragflow/docker
   $ docker compose up -d
   ```

   > The core image is about 9 GB in size and may take a while to load.

4. Check the server status after having the server up and running:

   ```bash
   $ docker logs -f ragflow-server
   ```

   _The following output confirms a successful launch of the system:_

   ```bash

         ____   ___    ______ ______ __               
        / __ \ /   |  / ____// ____// /____  _      __
       / /_/ // /| | / / __ / /_   / // __ \| | /| / /
      / _, _// ___ |/ /_/ // __/  / // /_/ /| |/ |/ / 
     /_/ |_|/_/  |_|\____//_/    /_/ \____/ |__/|__/ 

    * Running on all addresses (0.0.0.0)
    * Running on http://127.0.0.1:9380
    * Running on http://x.x.x.x:9380
    INFO:werkzeug:Press CTRL+C to quit
   ```
   > If you skip this confirmation step and directly log in to RAGFlow, your browser may prompt a `network abnormal` error because, at that moment, your RAGFlow may not be fully initialized.  

5. In your web browser, enter the IP address of your server and log in to RAGFlow.
   > With the default settings, you only need to enter `http://IP_OF_YOUR_MACHINE` (**sans** port number) as the default HTTP serving port `80` can be omitted when using the default configurations.
6. In [service_conf.yaml](./docker/service_conf.yaml), select the desired LLM factory in `user_default_llm` and update the `API_KEY` field with the corresponding API key.

   > See [llm_api_key_setup](https://ragflow.io/docs/dev/llm_api_key_setup) for more information.

   _The show is on!_

## 🔧 Configurations

When it comes to system configurations, you will need to manage the following files:

- [.env](./docker/.env): Keeps the fundamental setups for the system, such as `SVR_HTTP_PORT`, `MYSQL_PASSWORD`, and `MINIO_PASSWORD`.
- [service_conf.yaml](./docker/service_conf.yaml): Configures the back-end services.
- [docker-compose.yml](./docker/docker-compose.yml): The system relies on [docker-compose.yml](./docker/docker-compose.yml) to start up.

You must ensure that changes to the [.env](./docker/.env) file are in line with what are in the [service_conf.yaml](./docker/service_conf.yaml) file.

> The [./docker/README](./docker/README.md) file provides a detailed description of the environment settings and service configurations, and you are REQUIRED to ensure that all environment settings listed in the [./docker/README](./docker/README.md) file are aligned with the corresponding configurations in the [service_conf.yaml](./docker/service_conf.yaml) file.

To update the default HTTP serving port (80), go to [docker-compose.yml](./docker/docker-compose.yml) and change `80:80` to `<YOUR_SERVING_PORT>:80`.

Updates to the above configurations require a reboot of all containers to take effect:

> ```bash
> $ docker compose -f docker/docker-compose.yml up -d
> ```

## 🔧 Build a Docker image without embedding models

This image is approximately 1 GB in size and relies on external LLM and embedding services.

```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
pip3 install huggingface-hub nltk
python3 download_deps.py
docker build -f Dockerfile.slim -t infiniflow/ragflow:dev-slim .
```

## 🔧 Build a Docker image including embedding models

This image is approximately 9 GB in size. As it includes embedding models, it relies on external LLM services only.  

```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
pip3 install huggingface-hub nltk
python3 download_deps.py
docker build -f Dockerfile -t infiniflow/ragflow:dev .
```

## 🔨 Launch service from source for development

1. Install Poetry, or skip this step if it is already installed:  
   ```bash
   curl -sSL https://install.python-poetry.org | python3 -
   ```

2. Clone the source code and install Python dependencies:  
   ```bash
   git clone https://github.com/infiniflow/ragflow.git
   cd ragflow/
   export POETRY_VIRTUALENVS_CREATE=true POETRY_VIRTUALENVS_IN_PROJECT=true
   ~/.local/bin/poetry install --sync --no-root # install RAGFlow dependent python modules
   ```

3. Launch the dependent services (MinIO, Elasticsearch, Redis, and MySQL) using Docker Compose:  
   ```bash
   docker compose -f docker/docker-compose-base.yml up -d
   ```

   Add the following line to `/etc/hosts` to resolve all hosts specified in **docker/service_conf.yaml** to `127.0.0.1`:  
   ```
   127.0.0.1       es01 mysql minio redis
   ```  
   In **docker/service_conf.yaml**, update mysql port to `5455` and es port to `1200`, as specified in **docker/.env**.

4. If you cannot access HuggingFace, set the `HF_ENDPOINT` environment variable to use a mirror site:  
 
   ```bash
   export HF_ENDPOINT=https://hf-mirror.com
   ```

5. Launch backend service:  
   ```bash
   source .venv/bin/activate
   export PYTHONPATH=$(pwd)
   bash docker/launch_backend_service.sh
   ```

6. Install frontend dependencies:  
   ```bash
   cd web
   npm install --force
   ```  
7. Configure frontend to update `proxy.target` in **.umirc.ts** to `http://127.0.0.1:9380`:
8. Launch frontend service:  
   ```bash
   npm run dev 
   ```  

   _The following output confirms a successful launch of the system:_  

   ![](https://github.com/user-attachments/assets/0daf462c-a24d-4496-a66f-92533534e187)

## 📚 Documentation

- [Quickstart](https://ragflow.io/docs/dev/)
- [User guide](https://ragflow.io/docs/dev/category/user-guides)
- [References](https://ragflow.io/docs/dev/category/references)
- [FAQ](https://ragflow.io/docs/dev/faq)

## 📜 Roadmap

See the [RAGFlow Roadmap 2024](https://github.com/infiniflow/ragflow/issues/162)

## 🏄 Community

- [Discord](https://discord.gg/4XxujFgUN7)
- [Twitter](https://twitter.com/infiniflowai)
- [GitHub Discussions](https://github.com/orgs/infiniflow/discussions)

## 🙌 Contributing

RAGFlow flourishes via open-source collaboration. In this spirit, we embrace diverse contributions from the community. If you would like to be a part, review our [Contribution Guidelines](./CONTRIBUTING.md) first.