import gradio as gr from transformers import AutoModelForSeq2SeqLM, AutoTokenizer from peft import PeftModel # Load base model and LoRA fine-tuned model base_model = AutoModelForSeq2SeqLM.from_pretrained("google/byt5-small") model = PeftModel.from_pretrained(base_model, "rihebriri/byt5_lora_finetuned") tokenizer = AutoTokenizer.from_pretrained("google/byt5-small") # Define function to correct text def correct_text(text): inputs = tokenizer(text, return_tensors="pt").input_ids outputs = model.generate(inputs) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Create Gradio interface iface = gr.Interface(fn=correct_text, inputs="text", outputs="text") # Launch API iface.launch()