File size: 23,348 Bytes
3d53f11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "164d7e04",
   "metadata": {},
   "source": [
    "# Multi-Split Decision Tree Visualizer\n",
    "\n",
    "This notebook creates an interactive Gradio app to visualize how decision trees partition the feature space with **multiple splits** and shows the complete **decision tree structure**.\n",
    "\n",
    "## ✨ New Features:\n",
    "- **Multiple Partitions**: Add as many splits as you want to build a complete tree\n",
    "- **Decision Tree Visualization**: See the tree structure with all nodes and connections\n",
    "- **Interactive Split Entry**: Add splits in a simple text format (feature, threshold)\n",
    "- **Comprehensive Statistics**: Track entropy and Gini index for each node and leaf\n",
    "- **Color-coded Visualization**: \n",
    "  - Blue arrows = \"Yes\" branch (≤ threshold)\n",
    "  - Red arrows = \"No\" branch (> threshold)\n",
    "  - Light blue leaves = Predicts Class 0 (Lemon)\n",
    "  - Orange leaves = Predicts Class 1 (Orange)\n",
    "\n",
    "## 📊 Three-Panel Display:\n",
    "1. **Top-Left**: Partitioned feature space with all split boundaries\n",
    "2. **Bottom-Left**: Complete decision tree structure\n",
    "3. **Right**: Detailed statistics and impurity measures"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "8b654a81",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "c:\\Users\\rinab\\miniforge3\\envs\\WORK\\lib\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "* Running on local URL:  http://127.0.0.1:7860\n",
      "* Running on public URL: https://4d58db9d9d6f8c53bc.gradio.live\n",
      "\n",
      "This share link expires in 1 week. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n",
      "* Running on public URL: https://4d58db9d9d6f8c53bc.gradio.live\n",
      "\n",
      "This share link expires in 1 week. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"https://4d58db9d9d6f8c53bc.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 1,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import gradio as gr\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "from matplotlib.patches import Rectangle, FancyBboxPatch\n",
    "import io\n",
    "from PIL import Image\n",
    "from matplotlib.patches import FancyArrowPatch\n",
    "\n",
    "class TreeNode:\n",
    "    \"\"\"Represents a node in the decision tree\"\"\"\n",
    "    def __init__(self, depth=0, bounds=None):\n",
    "        self.depth = depth\n",
    "        self.bounds = bounds if bounds else {'x': (0, 10), 'y': (0, 10)}\n",
    "        self.feature = None  # 'x' or 'y'\n",
    "        self.threshold = None\n",
    "        self.left = None\n",
    "        self.right = None\n",
    "        self.is_leaf = True\n",
    "        self.samples = None\n",
    "        self.class_counts = None\n",
    "        self.entropy = None\n",
    "        self.gini = None\n",
    "        self.majority_class = None\n",
    "        \n",
    "class DecisionTreePartitioner:\n",
    "    def __init__(self):\n",
    "        self.reset_data()\n",
    "        self.splits = []  # List of (feature, threshold) tuples\n",
    "        self.root = None\n",
    "        \n",
    "    def reset_data(self):\n",
    "        \"\"\"Generate sample data with two classes\"\"\"\n",
    "        np.random.seed(42)\n",
    "        # Class 0 (blue) - bottom left\n",
    "        n_samples = 50\n",
    "        self.X0 = np.random.randn(n_samples, 2) * 1.5 + np.array([3, 3])\n",
    "        # Class 1 (red) - top right  \n",
    "        self.X1 = np.random.randn(n_samples, 2) * 1.5 + np.array([7, 7])\n",
    "        \n",
    "        self.X = np.vstack([self.X0, self.X1])\n",
    "        self.y = np.hstack([np.zeros(n_samples), np.ones(n_samples)])\n",
    "        self.splits = []\n",
    "        self.root = None\n",
    "        \n",
    "    def calculate_entropy(self, y):\n",
    "        \"\"\"Calculate entropy for a set of labels\"\"\"\n",
    "        if len(y) == 0:\n",
    "            return 0\n",
    "        _, counts = np.unique(y, return_counts=True)\n",
    "        probabilities = counts / len(y)\n",
    "        entropy = -np.sum(probabilities * np.log2(probabilities + 1e-10))\n",
    "        return entropy\n",
    "    \n",
    "    def calculate_gini(self, y):\n",
    "        \"\"\"Calculate Gini index for a set of labels\"\"\"\n",
    "        if len(y) == 0:\n",
    "            return 0\n",
    "        _, counts = np.unique(y, return_counts=True)\n",
    "        probabilities = counts / len(y)\n",
    "        gini = 1 - np.sum(probabilities ** 2)\n",
    "        return gini\n",
    "    \n",
    "    def build_tree_from_splits(self):\n",
    "        \"\"\"Build tree structure from the list of splits\"\"\"\n",
    "        if not self.splits:\n",
    "            return None\n",
    "            \n",
    "        self.root = TreeNode(depth=0)\n",
    "        self._build_node(self.root, np.arange(len(self.y)), 0)\n",
    "        return self.root\n",
    "    \n",
    "    def _build_node(self, node, indices, split_idx):\n",
    "        \"\"\"Recursively build tree nodes\"\"\"\n",
    "        if len(indices) == 0:\n",
    "            return\n",
    "            \n",
    "        # Calculate node statistics\n",
    "        node.samples = len(indices)\n",
    "        y_node = self.y[indices]\n",
    "        unique, counts = np.unique(y_node, return_counts=True)\n",
    "        node.class_counts = dict(zip(unique.astype(int), counts))\n",
    "        node.entropy = self.calculate_entropy(y_node)\n",
    "        node.gini = self.calculate_gini(y_node)\n",
    "        node.majority_class = int(unique[np.argmax(counts)])\n",
    "        \n",
    "        # Check if we have more splits to apply\n",
    "        if split_idx >= len(self.splits):\n",
    "            node.is_leaf = True\n",
    "            return\n",
    "            \n",
    "        # Apply the split\n",
    "        feature, threshold = self.splits[split_idx]\n",
    "        feature_idx = 0 if feature == 'x' else 1\n",
    "        \n",
    "        X_node = self.X[indices]\n",
    "        left_mask = X_node[:, feature_idx] <= threshold\n",
    "        right_mask = ~left_mask\n",
    "        \n",
    "        left_indices = indices[left_mask]\n",
    "        right_indices = indices[right_mask]\n",
    "        \n",
    "        # Only create split if both children are non-empty\n",
    "        if len(left_indices) > 0 and len(right_indices) > 0:\n",
    "            node.is_leaf = False\n",
    "            node.feature = feature\n",
    "            node.threshold = threshold\n",
    "            \n",
    "            # Create child nodes with updated bounds\n",
    "            left_bounds = node.bounds.copy()\n",
    "            right_bounds = node.bounds.copy()\n",
    "            \n",
    "            if feature == 'x':\n",
    "                left_bounds['x'] = (node.bounds['x'][0], threshold)\n",
    "                right_bounds['x'] = (threshold, node.bounds['x'][1])\n",
    "            else:\n",
    "                left_bounds['y'] = (node.bounds['y'][0], threshold)\n",
    "                right_bounds['y'] = (threshold, node.bounds['y'][1])\n",
    "            \n",
    "            node.left = TreeNode(depth=node.depth + 1, bounds=left_bounds)\n",
    "            node.right = TreeNode(depth=node.depth + 1, bounds=right_bounds)\n",
    "            \n",
    "            # Recursively build children\n",
    "            self._build_node(node.left, left_indices, split_idx + 1)\n",
    "            self._build_node(node.right, right_indices, split_idx + 1)\n",
    "    \n",
    "    def add_split(self, feature, threshold):\n",
    "        \"\"\"Add a new split to the tree\"\"\"\n",
    "        self.splits.append((feature, threshold))\n",
    "        self.build_tree_from_splits()\n",
    "        \n",
    "    def remove_last_split(self):\n",
    "        \"\"\"Remove the last split\"\"\"\n",
    "        if self.splits:\n",
    "            self.splits.pop()\n",
    "            if self.splits:\n",
    "                self.build_tree_from_splits()\n",
    "            else:\n",
    "                self.root = None\n",
    "    \n",
    "    def draw_tree(self, node=None, ax=None, x=0.5, y=1.0, dx=0.25, level=0):\n",
    "        \"\"\"Recursively draw the decision tree\"\"\"\n",
    "        if node is None:\n",
    "            return\n",
    "            \n",
    "        # Node styling\n",
    "        if node.is_leaf:\n",
    "            box_color = 'lightblue' if node.majority_class == 0 else 'orange'\n",
    "            alpha = 0.7\n",
    "        else:\n",
    "            box_color = 'lightgreen'\n",
    "            alpha = 0.5\n",
    "        \n",
    "        # Create node text\n",
    "        if node.is_leaf:\n",
    "            text = f\"Leaf\\nClass: {node.majority_class}\\n\"\n",
    "            text += f\"Samples: {node.samples}\\n\"\n",
    "            text += f\"Entropy: {node.entropy:.3f}\\n\"\n",
    "            text += f\"Gini: {node.gini:.3f}\"\n",
    "        else:\n",
    "            feature_name = \"Width\" if node.feature == 'x' else \"Height\"\n",
    "            text = f\"{feature_name} ≤ {node.threshold:.2f}\\n\"\n",
    "            text += f\"Samples: {node.samples}\\n\"\n",
    "            text += f\"Entropy: {node.entropy:.3f}\\n\"\n",
    "            text += f\"Gini: {node.gini:.3f}\"\n",
    "        \n",
    "        # Draw box\n",
    "        bbox = dict(boxstyle=\"round,pad=0.3\", facecolor=box_color, \n",
    "                   edgecolor='black', linewidth=2, alpha=alpha)\n",
    "        ax.text(x, y, text, ha='center', va='center', fontsize=8,\n",
    "               bbox=bbox, fontweight='bold')\n",
    "        \n",
    "        # Draw connections to children\n",
    "        if not node.is_leaf and node.left and node.right:\n",
    "            # Left child\n",
    "            y_child = y - 0.15\n",
    "            x_left = x - dx\n",
    "            x_right = x + dx\n",
    "            \n",
    "            # Draw arrows\n",
    "            arrow_left = FancyArrowPatch((x, y - 0.05), (x_left, y_child + 0.05),\n",
    "                                        arrowstyle='->', mutation_scale=20, \n",
    "                                        linewidth=2, color='blue')\n",
    "            arrow_right = FancyArrowPatch((x, y - 0.05), (x_right, y_child + 0.05),\n",
    "                                         arrowstyle='->', mutation_scale=20,\n",
    "                                         linewidth=2, color='red')\n",
    "            ax.add_patch(arrow_left)\n",
    "            ax.add_patch(arrow_right)\n",
    "            \n",
    "            # Add Yes/No labels\n",
    "            ax.text((x + x_left) / 2, (y + y_child) / 2, 'Yes', \n",
    "                   fontsize=9, color='blue', fontweight='bold')\n",
    "            ax.text((x + x_right) / 2, (y + y_child) / 2, 'No',\n",
    "                   fontsize=9, color='red', fontweight='bold')\n",
    "            \n",
    "            # Recursively draw children\n",
    "            self.draw_tree(node.left, ax, x_left, y_child, dx * 0.5, level + 1)\n",
    "            self.draw_tree(node.right, ax, x_right, y_child, dx * 0.5, level + 1)\n",
    "    \n",
    "    def visualize(self, split_history):\n",
    "        \"\"\"Create comprehensive visualization\"\"\"\n",
    "        fig = plt.figure(figsize=(20, 10))\n",
    "        gs = fig.add_gridspec(2, 2, height_ratios=[1, 1], width_ratios=[1.2, 1])\n",
    "        \n",
    "        ax1 = fig.add_subplot(gs[0, 0])  # Partition view\n",
    "        ax2 = fig.add_subplot(gs[1, 0])  # Decision tree\n",
    "        ax3 = fig.add_subplot(gs[:, 1])  # Statistics\n",
    "        \n",
    "        # Parse split history\n",
    "        self.splits = []\n",
    "        if split_history.strip():\n",
    "            for line in split_history.strip().split('\\n'):\n",
    "                if ',' in line:\n",
    "                    parts = line.split(',')\n",
    "                    if len(parts) == 2:\n",
    "                        feature = parts[0].strip().lower()\n",
    "                        try:\n",
    "                            threshold = float(parts[1].strip())\n",
    "                            self.splits.append((feature, threshold))\n",
    "                        except ValueError:\n",
    "                            pass\n",
    "        \n",
    "        # Build tree from splits\n",
    "        if self.splits:\n",
    "            self.build_tree_from_splits()\n",
    "        \n",
    "        # === Plot 1: Partitioned Feature Space ===\n",
    "        ax1.scatter(self.X[self.y == 0, 0], self.X[self.y == 0, 1], \n",
    "                   c='blue', label='Class 0 (Lemon)', s=100, alpha=0.6, edgecolors='k')\n",
    "        ax1.scatter(self.X[self.y == 1, 0], self.X[self.y == 1, 1], \n",
    "                   c='orange', label='Class 1 (Orange)', s=100, alpha=0.6, edgecolors='k')\n",
    "        \n",
    "        # Draw all partition lines\n",
    "        colors = plt.cm.rainbow(np.linspace(0, 1, len(self.splits)))\n",
    "        for idx, (feature, threshold) in enumerate(self.splits):\n",
    "            if feature == 'x':\n",
    "                ax1.axvline(x=threshold, color=colors[idx], linewidth=2.5, \n",
    "                           linestyle='--', label=f'Split {idx+1}: x≤{threshold:.1f}', alpha=0.8)\n",
    "            else:\n",
    "                ax1.axhline(y=threshold, color=colors[idx], linewidth=2.5,\n",
    "                           linestyle='--', label=f'Split {idx+1}: y≤{threshold:.1f}', alpha=0.8)\n",
    "        \n",
    "        ax1.set_xlabel('Feature 1 (Width)', fontsize=14, fontweight='bold')\n",
    "        ax1.set_ylabel('Feature 2 (Height)', fontsize=14, fontweight='bold')\n",
    "        ax1.set_title('Partitioned Feature Space', fontsize=16, fontweight='bold')\n",
    "        ax1.legend(fontsize=10, loc='upper left')\n",
    "        ax1.grid(True, alpha=0.3)\n",
    "        ax1.set_xlim(0, 10)\n",
    "        ax1.set_ylim(0, 10)\n",
    "        \n",
    "        # === Plot 2: Decision Tree ===\n",
    "        ax2.clear()\n",
    "        ax2.set_xlim(0, 1)\n",
    "        ax2.set_ylim(0, 1)\n",
    "        ax2.axis('off')\n",
    "        ax2.set_title('Decision Tree Structure', fontsize=16, fontweight='bold', pad=20)\n",
    "        \n",
    "        if self.root:\n",
    "            self.draw_tree(self.root, ax2)\n",
    "        else:\n",
    "            ax2.text(0.5, 0.5, 'No splits yet\\nAdd splits to build the tree', \n",
    "                    ha='center', va='center', fontsize=14,\n",
    "                    bbox=dict(boxstyle='round', facecolor='wheat', alpha=0.5))\n",
    "        \n",
    "        # === Plot 3: Statistics ===\n",
    "        ax3.clear()\n",
    "        ax3.axis('off')\n",
    "        \n",
    "        # Calculate overall statistics\n",
    "        entropy_initial = self.calculate_entropy(self.y)\n",
    "        gini_initial = self.calculate_gini(self.y)\n",
    "        \n",
    "        stats_text = \"DECISION TREE STATISTICS\\n\" + \"=\"*50 + \"\\n\\n\"\n",
    "        stats_text += f\"Total Samples: {len(self.y)}\\n\"\n",
    "        stats_text += f\"  • Class 0: {np.sum(self.y == 0)}\\n\"\n",
    "        stats_text += f\"  • Class 1: {np.sum(self.y == 1)}\\n\\n\"\n",
    "        stats_text += f\"Initial Impurity:\\n\"\n",
    "        stats_text += f\"  • Entropy: {entropy_initial:.4f}\\n\"\n",
    "        stats_text += f\"  • Gini: {gini_initial:.4f}\\n\\n\"\n",
    "        \n",
    "        if self.splits:\n",
    "            stats_text += f\"Number of Splits: {len(self.splits)}\\n\\n\"\n",
    "            stats_text += \"SPLIT SEQUENCE:\\n\" + \"-\"*50 + \"\\n\"\n",
    "            \n",
    "            for idx, (feature, threshold) in enumerate(self.splits):\n",
    "                feature_name = \"Width (x)\" if feature == 'x' else \"Height (y)\"\n",
    "                stats_text += f\"\\n{idx+1}. {feature_name} ≤ {threshold:.2f}\\n\"\n",
    "            \n",
    "            # Get leaf statistics\n",
    "            leaves = []\n",
    "            self._collect_leaves(self.root, leaves)\n",
    "            \n",
    "            if leaves:\n",
    "                stats_text += f\"\\n\\nLEAF NODES: {len(leaves)}\\n\" + \"-\"*50 + \"\\n\"\n",
    "                for idx, leaf in enumerate(leaves):\n",
    "                    stats_text += f\"\\nLeaf {idx+1}:\\n\"\n",
    "                    stats_text += f\"  • Samples: {leaf.samples}\\n\"\n",
    "                    stats_text += f\"  • Class 0: {leaf.class_counts.get(0, 0)} | \"\n",
    "                    stats_text += f\"Class 1: {leaf.class_counts.get(1, 0)}\\n\"\n",
    "                    stats_text += f\"  • Prediction: Class {leaf.majority_class}\\n\"\n",
    "                    stats_text += f\"  • Entropy: {leaf.entropy:.4f}\\n\"\n",
    "                    stats_text += f\"  • Gini: {leaf.gini:.4f}\\n\"\n",
    "                \n",
    "                # Calculate weighted average impurity\n",
    "                total_samples = sum(leaf.samples for leaf in leaves)\n",
    "                avg_entropy = sum(leaf.entropy * leaf.samples for leaf in leaves) / total_samples\n",
    "                avg_gini = sum(leaf.gini * leaf.samples for leaf in leaves) / total_samples\n",
    "                \n",
    "                stats_text += f\"\\n\\nWEIGHTED AVERAGE IMPURITY:\\n\" + \"-\"*50 + \"\\n\"\n",
    "                stats_text += f\"  • Entropy: {avg_entropy:.4f}\\n\"\n",
    "                stats_text += f\"  • Gini: {avg_gini:.4f}\\n\"\n",
    "                stats_text += f\"\\nTOTAL INFORMATION GAIN:\\n\"\n",
    "                stats_text += f\"  • {entropy_initial - avg_entropy:.4f}\\n\"\n",
    "                stats_text += f\"\\nTOTAL GINI REDUCTION:\\n\"\n",
    "                stats_text += f\"  • {gini_initial - avg_gini:.4f}\\n\"\n",
    "        else:\n",
    "            stats_text += \"No splits applied yet.\\n\"\n",
    "            stats_text += \"\\nAdd splits in the format:\\n\"\n",
    "            stats_text += \"  feature, threshold\\n\\n\"\n",
    "            stats_text += \"Example:\\n\"\n",
    "            stats_text += \"  x, 5.0\\n\"\n",
    "            stats_text += \"  y, 6.5\\n\"\n",
    "        \n",
    "        ax3.text(0.05, 0.95, stats_text, transform=ax3.transAxes,\n",
    "                fontsize=10, verticalalignment='top',\n",
    "                bbox=dict(boxstyle='round', facecolor='wheat', alpha=0.5),\n",
    "                family='monospace')\n",
    "        \n",
    "        plt.tight_layout()\n",
    "        \n",
    "        # Convert to image\n",
    "        buf = io.BytesIO()\n",
    "        plt.savefig(buf, format='png', dpi=120, bbox_inches='tight')\n",
    "        buf.seek(0)\n",
    "        img = Image.open(buf)\n",
    "        plt.close()\n",
    "        \n",
    "        return img\n",
    "    \n",
    "    def _collect_leaves(self, node, leaves):\n",
    "        \"\"\"Collect all leaf nodes\"\"\"\n",
    "        if node is None:\n",
    "            return\n",
    "        if node.is_leaf:\n",
    "            leaves.append(node)\n",
    "        else:\n",
    "            self._collect_leaves(node.left, leaves)\n",
    "            self._collect_leaves(node.right, leaves)\n",
    "\n",
    "# Create the partitioner\n",
    "partitioner = DecisionTreePartitioner()\n",
    "\n",
    "# Create Gradio interface\n",
    "with gr.Blocks(title=\"Multi-Split Decision Tree Visualizer\", theme=gr.themes.Soft()) as demo:\n",
    "    gr.Markdown(\"\"\"\n",
    "    # 🌳 Interactive Multi-Split Decision Tree Visualizer\n",
    "    \n",
    "    Build a decision tree step-by-step and visualize the partitioning process!\n",
    "    \n",
    "    \"\"\")\n",
    "    \n",
    "    with gr.Row():\n",
    "        with gr.Column(scale=1):\n",
    "            split_input = gr.Textbox(\n",
    "                label=\"📝 Split Sequence (one per line: feature, threshold)\",\n",
    "                placeholder=\"x, 5.0\\ny, 6.5\\nx, 3.0\",\n",
    "                lines=10,\n",
    "                value=\"x, 5.0\"\n",
    "            )\n",
    "            \n",
    "            update_btn = gr.Button(\"🔄 Update Visualization\", variant=\"primary\", size=\"lg\")\n",
    "            \n",
    "            gr.Markdown(\"\"\"\n",
    "            ### Example Splits:\n",
    "            **Simple 2-split tree:**\n",
    "            ```\n",
    "            x, 5.0\n",
    "            y, 6.5\n",
    "            ```\n",
    "            \n",
    "            **Complex 4-split tree:**\n",
    "            ```\n",
    "            x, 5.0\n",
    "            y, 6.5\n",
    "            x, 3.0\n",
    "            y, 8.0\n",
    "            ```\n",
    "            \"\"\")\n",
    "            \n",
    "        with gr.Column(scale=2):\n",
    "            output_image = gr.Image(label=\"Visualization\", height=800)\n",
    "    \n",
    "    # Update visualization\n",
    "    update_btn.click(\n",
    "        fn=partitioner.visualize,\n",
    "        inputs=[split_input],\n",
    "        outputs=output_image\n",
    "    )\n",
    "    \n",
    "    # Initial visualization\n",
    "    demo.load(\n",
    "        fn=partitioner.visualize,\n",
    "        inputs=[split_input],\n",
    "        outputs=output_image\n",
    "    )\n",
    "\n",
    "# Launch the app\n",
    "demo.launch(share=True)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "WORK",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.18"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}