File size: 23,348 Bytes
3d53f11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 |
{
"cells": [
{
"cell_type": "markdown",
"id": "164d7e04",
"metadata": {},
"source": [
"# Multi-Split Decision Tree Visualizer\n",
"\n",
"This notebook creates an interactive Gradio app to visualize how decision trees partition the feature space with **multiple splits** and shows the complete **decision tree structure**.\n",
"\n",
"## ✨ New Features:\n",
"- **Multiple Partitions**: Add as many splits as you want to build a complete tree\n",
"- **Decision Tree Visualization**: See the tree structure with all nodes and connections\n",
"- **Interactive Split Entry**: Add splits in a simple text format (feature, threshold)\n",
"- **Comprehensive Statistics**: Track entropy and Gini index for each node and leaf\n",
"- **Color-coded Visualization**: \n",
" - Blue arrows = \"Yes\" branch (≤ threshold)\n",
" - Red arrows = \"No\" branch (> threshold)\n",
" - Light blue leaves = Predicts Class 0 (Lemon)\n",
" - Orange leaves = Predicts Class 1 (Orange)\n",
"\n",
"## 📊 Three-Panel Display:\n",
"1. **Top-Left**: Partitioned feature space with all split boundaries\n",
"2. **Bottom-Left**: Complete decision tree structure\n",
"3. **Right**: Detailed statistics and impurity measures"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "8b654a81",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\rinab\\miniforge3\\envs\\WORK\\lib\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"* Running on local URL: http://127.0.0.1:7860\n",
"* Running on public URL: https://4d58db9d9d6f8c53bc.gradio.live\n",
"\n",
"This share link expires in 1 week. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n",
"* Running on public URL: https://4d58db9d9d6f8c53bc.gradio.live\n",
"\n",
"This share link expires in 1 week. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"https://4d58db9d9d6f8c53bc.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import gradio as gr\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from matplotlib.patches import Rectangle, FancyBboxPatch\n",
"import io\n",
"from PIL import Image\n",
"from matplotlib.patches import FancyArrowPatch\n",
"\n",
"class TreeNode:\n",
" \"\"\"Represents a node in the decision tree\"\"\"\n",
" def __init__(self, depth=0, bounds=None):\n",
" self.depth = depth\n",
" self.bounds = bounds if bounds else {'x': (0, 10), 'y': (0, 10)}\n",
" self.feature = None # 'x' or 'y'\n",
" self.threshold = None\n",
" self.left = None\n",
" self.right = None\n",
" self.is_leaf = True\n",
" self.samples = None\n",
" self.class_counts = None\n",
" self.entropy = None\n",
" self.gini = None\n",
" self.majority_class = None\n",
" \n",
"class DecisionTreePartitioner:\n",
" def __init__(self):\n",
" self.reset_data()\n",
" self.splits = [] # List of (feature, threshold) tuples\n",
" self.root = None\n",
" \n",
" def reset_data(self):\n",
" \"\"\"Generate sample data with two classes\"\"\"\n",
" np.random.seed(42)\n",
" # Class 0 (blue) - bottom left\n",
" n_samples = 50\n",
" self.X0 = np.random.randn(n_samples, 2) * 1.5 + np.array([3, 3])\n",
" # Class 1 (red) - top right \n",
" self.X1 = np.random.randn(n_samples, 2) * 1.5 + np.array([7, 7])\n",
" \n",
" self.X = np.vstack([self.X0, self.X1])\n",
" self.y = np.hstack([np.zeros(n_samples), np.ones(n_samples)])\n",
" self.splits = []\n",
" self.root = None\n",
" \n",
" def calculate_entropy(self, y):\n",
" \"\"\"Calculate entropy for a set of labels\"\"\"\n",
" if len(y) == 0:\n",
" return 0\n",
" _, counts = np.unique(y, return_counts=True)\n",
" probabilities = counts / len(y)\n",
" entropy = -np.sum(probabilities * np.log2(probabilities + 1e-10))\n",
" return entropy\n",
" \n",
" def calculate_gini(self, y):\n",
" \"\"\"Calculate Gini index for a set of labels\"\"\"\n",
" if len(y) == 0:\n",
" return 0\n",
" _, counts = np.unique(y, return_counts=True)\n",
" probabilities = counts / len(y)\n",
" gini = 1 - np.sum(probabilities ** 2)\n",
" return gini\n",
" \n",
" def build_tree_from_splits(self):\n",
" \"\"\"Build tree structure from the list of splits\"\"\"\n",
" if not self.splits:\n",
" return None\n",
" \n",
" self.root = TreeNode(depth=0)\n",
" self._build_node(self.root, np.arange(len(self.y)), 0)\n",
" return self.root\n",
" \n",
" def _build_node(self, node, indices, split_idx):\n",
" \"\"\"Recursively build tree nodes\"\"\"\n",
" if len(indices) == 0:\n",
" return\n",
" \n",
" # Calculate node statistics\n",
" node.samples = len(indices)\n",
" y_node = self.y[indices]\n",
" unique, counts = np.unique(y_node, return_counts=True)\n",
" node.class_counts = dict(zip(unique.astype(int), counts))\n",
" node.entropy = self.calculate_entropy(y_node)\n",
" node.gini = self.calculate_gini(y_node)\n",
" node.majority_class = int(unique[np.argmax(counts)])\n",
" \n",
" # Check if we have more splits to apply\n",
" if split_idx >= len(self.splits):\n",
" node.is_leaf = True\n",
" return\n",
" \n",
" # Apply the split\n",
" feature, threshold = self.splits[split_idx]\n",
" feature_idx = 0 if feature == 'x' else 1\n",
" \n",
" X_node = self.X[indices]\n",
" left_mask = X_node[:, feature_idx] <= threshold\n",
" right_mask = ~left_mask\n",
" \n",
" left_indices = indices[left_mask]\n",
" right_indices = indices[right_mask]\n",
" \n",
" # Only create split if both children are non-empty\n",
" if len(left_indices) > 0 and len(right_indices) > 0:\n",
" node.is_leaf = False\n",
" node.feature = feature\n",
" node.threshold = threshold\n",
" \n",
" # Create child nodes with updated bounds\n",
" left_bounds = node.bounds.copy()\n",
" right_bounds = node.bounds.copy()\n",
" \n",
" if feature == 'x':\n",
" left_bounds['x'] = (node.bounds['x'][0], threshold)\n",
" right_bounds['x'] = (threshold, node.bounds['x'][1])\n",
" else:\n",
" left_bounds['y'] = (node.bounds['y'][0], threshold)\n",
" right_bounds['y'] = (threshold, node.bounds['y'][1])\n",
" \n",
" node.left = TreeNode(depth=node.depth + 1, bounds=left_bounds)\n",
" node.right = TreeNode(depth=node.depth + 1, bounds=right_bounds)\n",
" \n",
" # Recursively build children\n",
" self._build_node(node.left, left_indices, split_idx + 1)\n",
" self._build_node(node.right, right_indices, split_idx + 1)\n",
" \n",
" def add_split(self, feature, threshold):\n",
" \"\"\"Add a new split to the tree\"\"\"\n",
" self.splits.append((feature, threshold))\n",
" self.build_tree_from_splits()\n",
" \n",
" def remove_last_split(self):\n",
" \"\"\"Remove the last split\"\"\"\n",
" if self.splits:\n",
" self.splits.pop()\n",
" if self.splits:\n",
" self.build_tree_from_splits()\n",
" else:\n",
" self.root = None\n",
" \n",
" def draw_tree(self, node=None, ax=None, x=0.5, y=1.0, dx=0.25, level=0):\n",
" \"\"\"Recursively draw the decision tree\"\"\"\n",
" if node is None:\n",
" return\n",
" \n",
" # Node styling\n",
" if node.is_leaf:\n",
" box_color = 'lightblue' if node.majority_class == 0 else 'orange'\n",
" alpha = 0.7\n",
" else:\n",
" box_color = 'lightgreen'\n",
" alpha = 0.5\n",
" \n",
" # Create node text\n",
" if node.is_leaf:\n",
" text = f\"Leaf\\nClass: {node.majority_class}\\n\"\n",
" text += f\"Samples: {node.samples}\\n\"\n",
" text += f\"Entropy: {node.entropy:.3f}\\n\"\n",
" text += f\"Gini: {node.gini:.3f}\"\n",
" else:\n",
" feature_name = \"Width\" if node.feature == 'x' else \"Height\"\n",
" text = f\"{feature_name} ≤ {node.threshold:.2f}\\n\"\n",
" text += f\"Samples: {node.samples}\\n\"\n",
" text += f\"Entropy: {node.entropy:.3f}\\n\"\n",
" text += f\"Gini: {node.gini:.3f}\"\n",
" \n",
" # Draw box\n",
" bbox = dict(boxstyle=\"round,pad=0.3\", facecolor=box_color, \n",
" edgecolor='black', linewidth=2, alpha=alpha)\n",
" ax.text(x, y, text, ha='center', va='center', fontsize=8,\n",
" bbox=bbox, fontweight='bold')\n",
" \n",
" # Draw connections to children\n",
" if not node.is_leaf and node.left and node.right:\n",
" # Left child\n",
" y_child = y - 0.15\n",
" x_left = x - dx\n",
" x_right = x + dx\n",
" \n",
" # Draw arrows\n",
" arrow_left = FancyArrowPatch((x, y - 0.05), (x_left, y_child + 0.05),\n",
" arrowstyle='->', mutation_scale=20, \n",
" linewidth=2, color='blue')\n",
" arrow_right = FancyArrowPatch((x, y - 0.05), (x_right, y_child + 0.05),\n",
" arrowstyle='->', mutation_scale=20,\n",
" linewidth=2, color='red')\n",
" ax.add_patch(arrow_left)\n",
" ax.add_patch(arrow_right)\n",
" \n",
" # Add Yes/No labels\n",
" ax.text((x + x_left) / 2, (y + y_child) / 2, 'Yes', \n",
" fontsize=9, color='blue', fontweight='bold')\n",
" ax.text((x + x_right) / 2, (y + y_child) / 2, 'No',\n",
" fontsize=9, color='red', fontweight='bold')\n",
" \n",
" # Recursively draw children\n",
" self.draw_tree(node.left, ax, x_left, y_child, dx * 0.5, level + 1)\n",
" self.draw_tree(node.right, ax, x_right, y_child, dx * 0.5, level + 1)\n",
" \n",
" def visualize(self, split_history):\n",
" \"\"\"Create comprehensive visualization\"\"\"\n",
" fig = plt.figure(figsize=(20, 10))\n",
" gs = fig.add_gridspec(2, 2, height_ratios=[1, 1], width_ratios=[1.2, 1])\n",
" \n",
" ax1 = fig.add_subplot(gs[0, 0]) # Partition view\n",
" ax2 = fig.add_subplot(gs[1, 0]) # Decision tree\n",
" ax3 = fig.add_subplot(gs[:, 1]) # Statistics\n",
" \n",
" # Parse split history\n",
" self.splits = []\n",
" if split_history.strip():\n",
" for line in split_history.strip().split('\\n'):\n",
" if ',' in line:\n",
" parts = line.split(',')\n",
" if len(parts) == 2:\n",
" feature = parts[0].strip().lower()\n",
" try:\n",
" threshold = float(parts[1].strip())\n",
" self.splits.append((feature, threshold))\n",
" except ValueError:\n",
" pass\n",
" \n",
" # Build tree from splits\n",
" if self.splits:\n",
" self.build_tree_from_splits()\n",
" \n",
" # === Plot 1: Partitioned Feature Space ===\n",
" ax1.scatter(self.X[self.y == 0, 0], self.X[self.y == 0, 1], \n",
" c='blue', label='Class 0 (Lemon)', s=100, alpha=0.6, edgecolors='k')\n",
" ax1.scatter(self.X[self.y == 1, 0], self.X[self.y == 1, 1], \n",
" c='orange', label='Class 1 (Orange)', s=100, alpha=0.6, edgecolors='k')\n",
" \n",
" # Draw all partition lines\n",
" colors = plt.cm.rainbow(np.linspace(0, 1, len(self.splits)))\n",
" for idx, (feature, threshold) in enumerate(self.splits):\n",
" if feature == 'x':\n",
" ax1.axvline(x=threshold, color=colors[idx], linewidth=2.5, \n",
" linestyle='--', label=f'Split {idx+1}: x≤{threshold:.1f}', alpha=0.8)\n",
" else:\n",
" ax1.axhline(y=threshold, color=colors[idx], linewidth=2.5,\n",
" linestyle='--', label=f'Split {idx+1}: y≤{threshold:.1f}', alpha=0.8)\n",
" \n",
" ax1.set_xlabel('Feature 1 (Width)', fontsize=14, fontweight='bold')\n",
" ax1.set_ylabel('Feature 2 (Height)', fontsize=14, fontweight='bold')\n",
" ax1.set_title('Partitioned Feature Space', fontsize=16, fontweight='bold')\n",
" ax1.legend(fontsize=10, loc='upper left')\n",
" ax1.grid(True, alpha=0.3)\n",
" ax1.set_xlim(0, 10)\n",
" ax1.set_ylim(0, 10)\n",
" \n",
" # === Plot 2: Decision Tree ===\n",
" ax2.clear()\n",
" ax2.set_xlim(0, 1)\n",
" ax2.set_ylim(0, 1)\n",
" ax2.axis('off')\n",
" ax2.set_title('Decision Tree Structure', fontsize=16, fontweight='bold', pad=20)\n",
" \n",
" if self.root:\n",
" self.draw_tree(self.root, ax2)\n",
" else:\n",
" ax2.text(0.5, 0.5, 'No splits yet\\nAdd splits to build the tree', \n",
" ha='center', va='center', fontsize=14,\n",
" bbox=dict(boxstyle='round', facecolor='wheat', alpha=0.5))\n",
" \n",
" # === Plot 3: Statistics ===\n",
" ax3.clear()\n",
" ax3.axis('off')\n",
" \n",
" # Calculate overall statistics\n",
" entropy_initial = self.calculate_entropy(self.y)\n",
" gini_initial = self.calculate_gini(self.y)\n",
" \n",
" stats_text = \"DECISION TREE STATISTICS\\n\" + \"=\"*50 + \"\\n\\n\"\n",
" stats_text += f\"Total Samples: {len(self.y)}\\n\"\n",
" stats_text += f\" • Class 0: {np.sum(self.y == 0)}\\n\"\n",
" stats_text += f\" • Class 1: {np.sum(self.y == 1)}\\n\\n\"\n",
" stats_text += f\"Initial Impurity:\\n\"\n",
" stats_text += f\" • Entropy: {entropy_initial:.4f}\\n\"\n",
" stats_text += f\" • Gini: {gini_initial:.4f}\\n\\n\"\n",
" \n",
" if self.splits:\n",
" stats_text += f\"Number of Splits: {len(self.splits)}\\n\\n\"\n",
" stats_text += \"SPLIT SEQUENCE:\\n\" + \"-\"*50 + \"\\n\"\n",
" \n",
" for idx, (feature, threshold) in enumerate(self.splits):\n",
" feature_name = \"Width (x)\" if feature == 'x' else \"Height (y)\"\n",
" stats_text += f\"\\n{idx+1}. {feature_name} ≤ {threshold:.2f}\\n\"\n",
" \n",
" # Get leaf statistics\n",
" leaves = []\n",
" self._collect_leaves(self.root, leaves)\n",
" \n",
" if leaves:\n",
" stats_text += f\"\\n\\nLEAF NODES: {len(leaves)}\\n\" + \"-\"*50 + \"\\n\"\n",
" for idx, leaf in enumerate(leaves):\n",
" stats_text += f\"\\nLeaf {idx+1}:\\n\"\n",
" stats_text += f\" • Samples: {leaf.samples}\\n\"\n",
" stats_text += f\" • Class 0: {leaf.class_counts.get(0, 0)} | \"\n",
" stats_text += f\"Class 1: {leaf.class_counts.get(1, 0)}\\n\"\n",
" stats_text += f\" • Prediction: Class {leaf.majority_class}\\n\"\n",
" stats_text += f\" • Entropy: {leaf.entropy:.4f}\\n\"\n",
" stats_text += f\" • Gini: {leaf.gini:.4f}\\n\"\n",
" \n",
" # Calculate weighted average impurity\n",
" total_samples = sum(leaf.samples for leaf in leaves)\n",
" avg_entropy = sum(leaf.entropy * leaf.samples for leaf in leaves) / total_samples\n",
" avg_gini = sum(leaf.gini * leaf.samples for leaf in leaves) / total_samples\n",
" \n",
" stats_text += f\"\\n\\nWEIGHTED AVERAGE IMPURITY:\\n\" + \"-\"*50 + \"\\n\"\n",
" stats_text += f\" • Entropy: {avg_entropy:.4f}\\n\"\n",
" stats_text += f\" • Gini: {avg_gini:.4f}\\n\"\n",
" stats_text += f\"\\nTOTAL INFORMATION GAIN:\\n\"\n",
" stats_text += f\" • {entropy_initial - avg_entropy:.4f}\\n\"\n",
" stats_text += f\"\\nTOTAL GINI REDUCTION:\\n\"\n",
" stats_text += f\" • {gini_initial - avg_gini:.4f}\\n\"\n",
" else:\n",
" stats_text += \"No splits applied yet.\\n\"\n",
" stats_text += \"\\nAdd splits in the format:\\n\"\n",
" stats_text += \" feature, threshold\\n\\n\"\n",
" stats_text += \"Example:\\n\"\n",
" stats_text += \" x, 5.0\\n\"\n",
" stats_text += \" y, 6.5\\n\"\n",
" \n",
" ax3.text(0.05, 0.95, stats_text, transform=ax3.transAxes,\n",
" fontsize=10, verticalalignment='top',\n",
" bbox=dict(boxstyle='round', facecolor='wheat', alpha=0.5),\n",
" family='monospace')\n",
" \n",
" plt.tight_layout()\n",
" \n",
" # Convert to image\n",
" buf = io.BytesIO()\n",
" plt.savefig(buf, format='png', dpi=120, bbox_inches='tight')\n",
" buf.seek(0)\n",
" img = Image.open(buf)\n",
" plt.close()\n",
" \n",
" return img\n",
" \n",
" def _collect_leaves(self, node, leaves):\n",
" \"\"\"Collect all leaf nodes\"\"\"\n",
" if node is None:\n",
" return\n",
" if node.is_leaf:\n",
" leaves.append(node)\n",
" else:\n",
" self._collect_leaves(node.left, leaves)\n",
" self._collect_leaves(node.right, leaves)\n",
"\n",
"# Create the partitioner\n",
"partitioner = DecisionTreePartitioner()\n",
"\n",
"# Create Gradio interface\n",
"with gr.Blocks(title=\"Multi-Split Decision Tree Visualizer\", theme=gr.themes.Soft()) as demo:\n",
" gr.Markdown(\"\"\"\n",
" # 🌳 Interactive Multi-Split Decision Tree Visualizer\n",
" \n",
" Build a decision tree step-by-step and visualize the partitioning process!\n",
" \n",
" \"\"\")\n",
" \n",
" with gr.Row():\n",
" with gr.Column(scale=1):\n",
" split_input = gr.Textbox(\n",
" label=\"📝 Split Sequence (one per line: feature, threshold)\",\n",
" placeholder=\"x, 5.0\\ny, 6.5\\nx, 3.0\",\n",
" lines=10,\n",
" value=\"x, 5.0\"\n",
" )\n",
" \n",
" update_btn = gr.Button(\"🔄 Update Visualization\", variant=\"primary\", size=\"lg\")\n",
" \n",
" gr.Markdown(\"\"\"\n",
" ### Example Splits:\n",
" **Simple 2-split tree:**\n",
" ```\n",
" x, 5.0\n",
" y, 6.5\n",
" ```\n",
" \n",
" **Complex 4-split tree:**\n",
" ```\n",
" x, 5.0\n",
" y, 6.5\n",
" x, 3.0\n",
" y, 8.0\n",
" ```\n",
" \"\"\")\n",
" \n",
" with gr.Column(scale=2):\n",
" output_image = gr.Image(label=\"Visualization\", height=800)\n",
" \n",
" # Update visualization\n",
" update_btn.click(\n",
" fn=partitioner.visualize,\n",
" inputs=[split_input],\n",
" outputs=output_image\n",
" )\n",
" \n",
" # Initial visualization\n",
" demo.load(\n",
" fn=partitioner.visualize,\n",
" inputs=[split_input],\n",
" outputs=output_image\n",
" )\n",
"\n",
"# Launch the app\n",
"demo.launch(share=True)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "WORK",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.18"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|