Updated app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import spaces
|
| 3 |
+
import random
|
| 4 |
+
import torch
|
| 5 |
+
from huggingface_hub import snapshot_download
|
| 6 |
+
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_inpainting import StableDiffusionXLInpaintPipeline
|
| 7 |
+
from kolors.models.modeling_chatglm import ChatGLMModel
|
| 8 |
+
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
|
| 9 |
+
from diffusers import AutoencoderKL, EulerDiscreteScheduler, UNet2DConditionModel
|
| 10 |
+
from groundingdino.util.inference import load_model, predict
|
| 11 |
+
from segment_anything import SamAutomaticMaskGenerator
|
| 12 |
+
from PIL import Image
|
| 13 |
+
import numpy as np
|
| 14 |
+
import os
|
| 15 |
+
|
| 16 |
+
# Download model checkpoints
|
| 17 |
+
device = "cuda"
|
| 18 |
+
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors-Inpainting")
|
| 19 |
+
|
| 20 |
+
# Inpainting setup
|
| 21 |
+
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder',torch_dtype=torch.float16).half().to(device)
|
| 22 |
+
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
|
| 23 |
+
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
|
| 24 |
+
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
|
| 25 |
+
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
|
| 26 |
+
|
| 27 |
+
pipe = StableDiffusionXLInpaintPipeline(
|
| 28 |
+
vae=vae,
|
| 29 |
+
text_encoder=text_encoder,
|
| 30 |
+
tokenizer=tokenizer,
|
| 31 |
+
unet=unet,
|
| 32 |
+
scheduler=scheduler
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
pipe.to(device)
|
| 36 |
+
pipe.enable_attention_slicing()
|
| 37 |
+
|
| 38 |
+
# GroundingDINO and SAM setup
|
| 39 |
+
model_dino = load_model("path/to/groundingdino/config.yaml", "path/to/groundingdino/model.pth")
|
| 40 |
+
sam = SamAutomaticMaskGenerator(model_type="vit_h", checkpoint="model/sam_vit_h_4b8939.pth")
|
| 41 |
+
|
| 42 |
+
# Constants
|
| 43 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 44 |
+
|
| 45 |
+
def generate_mask(image: Image):
|
| 46 |
+
boxes, logits, phrases = predict(model_dino, image, "prompt") # Provide the proper prompt for detection
|
| 47 |
+
masks = sam.generate(image)
|
| 48 |
+
mask = masks[0]["segmentation"] # Use the first detected mask as an example
|
| 49 |
+
return Image.fromarray(mask)
|
| 50 |
+
|
| 51 |
+
@spaces.GPU
|
| 52 |
+
def infer(prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps):
|
| 53 |
+
if randomize_seed:
|
| 54 |
+
seed = random.randint(0, MAX_SEED)
|
| 55 |
+
|
| 56 |
+
# Generate mask using GroundingDINO + SAM
|
| 57 |
+
mask_image = generate_mask(image)
|
| 58 |
+
|
| 59 |
+
generator = torch.Generator().manual_seed(seed)
|
| 60 |
+
result = pipe(
|
| 61 |
+
prompt=prompt,
|
| 62 |
+
image=image,
|
| 63 |
+
mask_image=mask_image,
|
| 64 |
+
height=image.height,
|
| 65 |
+
width=image.width,
|
| 66 |
+
guidance_scale=guidance_scale,
|
| 67 |
+
generator=generator,
|
| 68 |
+
num_inference_steps=num_inference_steps,
|
| 69 |
+
negative_prompt=negative_prompt,
|
| 70 |
+
num_images_per_prompt=1,
|
| 71 |
+
strength=0.999
|
| 72 |
+
).images[0]
|
| 73 |
+
|
| 74 |
+
return result
|
| 75 |
+
|
| 76 |
+
css="""
|
| 77 |
+
#col-left {
|
| 78 |
+
margin: 0 auto;
|
| 79 |
+
max-width: 600px;
|
| 80 |
+
}
|
| 81 |
+
#col-right {
|
| 82 |
+
margin: 0 auto;
|
| 83 |
+
max-width: 700px;
|
| 84 |
+
}
|
| 85 |
+
"""
|
| 86 |
+
|
| 87 |
+
def load_description(fp):
|
| 88 |
+
with open(fp, 'r', encoding='utf-8') as f:
|
| 89 |
+
content = f.read()
|
| 90 |
+
return content
|
| 91 |
+
|
| 92 |
+
with gr.Blocks(css=css) as Kolors:
|
| 93 |
+
gr.HTML(load_description("assets/title.md"))
|
| 94 |
+
|
| 95 |
+
with gr.Row():
|
| 96 |
+
with gr.Column(elem_id="col-left"):
|
| 97 |
+
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt", lines=2)
|
| 98 |
+
image = gr.ImageEditor(label="Image", type="pil", image_mode='RGB')
|
| 99 |
+
|
| 100 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 101 |
+
negative_prompt = gr.Textbox(label="Negative prompt", value="low quality, bad anatomy")
|
| 102 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
| 103 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 104 |
+
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=6.0)
|
| 105 |
+
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=10, maximum=50, step=1, value=25)
|
| 106 |
+
|
| 107 |
+
run_button = gr.Button("Run")
|
| 108 |
+
|
| 109 |
+
with gr.Column(elem_id="col-right"):
|
| 110 |
+
result = gr.Image(label="Result", show_label=False)
|
| 111 |
+
|
| 112 |
+
run_button.click(
|
| 113 |
+
fn=infer,
|
| 114 |
+
inputs=[prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps],
|
| 115 |
+
outputs=[result]
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
Kolors.queue().launch(debug=True)
|