Update app.py
Browse files
app.py
CHANGED
|
@@ -1,482 +1,265 @@
|
|
| 1 |
import os
|
| 2 |
-
import shutil
|
| 3 |
-
import tempfile
|
| 4 |
-
import io
|
| 5 |
-
import re
|
| 6 |
-
from pathlib import Path
|
| 7 |
import gradio as gr
|
| 8 |
-
import
|
| 9 |
-
|
| 10 |
-
from
|
|
|
|
|
|
|
|
|
|
| 11 |
from langchain_huggingface import HuggingFaceEmbeddings, HuggingFaceEndpoint
|
| 12 |
-
from langchain.
|
|
|
|
|
|
|
| 13 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 14 |
-
from langchain_community.vectorstores import FAISS
|
| 15 |
from collections import OrderedDict
|
| 16 |
-
import fitz # PyMuPDF for more robust PDF handling
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
from fastapi.middleware.cors import CORSMiddleware
|
| 21 |
|
| 22 |
# Constants
|
| 23 |
-
KNOWLEDGE_DIR = "medical_knowledge"
|
| 24 |
-
VECTOR_STORE_PATH = "vectorstore"
|
| 25 |
-
MODEL_NAME = "microsoft/Phi-3-mini-4k-instruct" # Gated model requiring authentication
|
| 26 |
-
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 27 |
-
EMBEDDING_MODEL = "rishi002/all-MiniLM-L6-v2" # Using the embedding model from chatbot code
|
| 28 |
CACHE_DIR = "/tmp/models_cache"
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
#
|
| 31 |
-
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 32 |
-
if not HF_TOKEN:
|
| 33 |
-
print("Warning: HF_TOKEN not found in environment variables. You may not be able to access gated models.")
|
| 34 |
-
|
| 35 |
-
# Create cache directory
|
| 36 |
os.makedirs(CACHE_DIR, exist_ok=True)
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
self.vector_store = None
|
| 41 |
-
self.llm = None
|
| 42 |
-
self.qa_chain = None
|
| 43 |
-
self.user_report_data = "No report data available." # Default value
|
| 44 |
-
self.original_report_data = "No original report data available." # Store original data
|
| 45 |
-
# Initialize everything
|
| 46 |
-
self._load_or_create_vector_store()
|
| 47 |
-
self._initialize_llm()
|
| 48 |
-
self._setup_qa_chain()
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
if os.path.exists(VECTOR_STORE_PATH):
|
| 59 |
-
print("Loading existing vector store...")
|
| 60 |
-
self.vector_store = FAISS.load_local(VECTOR_STORE_PATH, embeddings, allow_dangerous_deserialization=True)
|
| 61 |
-
else:
|
| 62 |
-
print("Creating new vector store from documents...")
|
| 63 |
-
# Create knowledge directory if it doesn't exist
|
| 64 |
-
os.makedirs(KNOWLEDGE_DIR, exist_ok=True)
|
| 65 |
-
|
| 66 |
-
# Check if there are documents to process
|
| 67 |
-
if len(os.listdir(KNOWLEDGE_DIR)) == 0:
|
| 68 |
-
print(f"Warning: No documents found in {KNOWLEDGE_DIR}. Please add medical PDFs.")
|
| 69 |
-
# Initialize empty vector store
|
| 70 |
-
self.vector_store = FAISS.from_texts(["No medical knowledge available yet."], embeddings)
|
| 71 |
-
self.vector_store.save_local(VECTOR_STORE_PATH)
|
| 72 |
-
return
|
| 73 |
-
|
| 74 |
-
# Load all PDFs from the knowledge directory
|
| 75 |
-
try:
|
| 76 |
-
# First try with DirectoryLoader
|
| 77 |
-
loader = DirectoryLoader(KNOWLEDGE_DIR, glob="**/*.pdf", loader_cls=PyPDFLoader)
|
| 78 |
-
documents = loader.load()
|
| 79 |
-
|
| 80 |
-
# Split documents into chunks
|
| 81 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
| 82 |
-
chunk_size=1000,
|
| 83 |
-
chunk_overlap=200,
|
| 84 |
-
length_function=len
|
| 85 |
-
)
|
| 86 |
-
chunks = text_splitter.split_documents(documents)
|
| 87 |
-
|
| 88 |
-
# Create and save the vector store
|
| 89 |
-
self.vector_store = FAISS.from_documents(chunks, embeddings)
|
| 90 |
-
self.vector_store.save_local(VECTOR_STORE_PATH)
|
| 91 |
-
except Exception as e:
|
| 92 |
-
print(f"Error loading documents with DirectoryLoader: {str(e)}")
|
| 93 |
-
# Initialize with minimal data
|
| 94 |
-
self.vector_store = FAISS.from_texts(["No medical knowledge available yet."], embeddings)
|
| 95 |
-
self.vector_store.save_local(VECTOR_STORE_PATH)
|
| 96 |
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
model_kwargs={"max_length": 512}
|
| 107 |
-
)
|
| 108 |
-
except Exception as e:
|
| 109 |
-
print(f"Error initializing HuggingFaceEndpoint: {str(e)}")
|
| 110 |
-
# Fallback to a simpler model if needed
|
| 111 |
-
fallback_model = "google/flan-t5-large"
|
| 112 |
-
print(f"Falling back to {fallback_model}")
|
| 113 |
-
self.llm = HuggingFaceEndpoint(
|
| 114 |
-
repo_id=fallback_model,
|
| 115 |
-
task="text-generation",
|
| 116 |
-
temperature=0.5
|
| 117 |
-
)
|
| 118 |
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
|
|
|
| 126 |
|
| 127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
-
|
|
|
|
| 130 |
|
| 131 |
-
|
| 132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
-
# Create
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
)
|
| 139 |
|
| 140 |
-
#
|
| 141 |
-
|
|
|
|
| 142 |
|
| 143 |
-
#
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
retriever=retriever,
|
| 148 |
-
return_source_documents=False,
|
| 149 |
-
chain_type_kwargs={"prompt": prompt}
|
| 150 |
)
|
| 151 |
-
|
| 152 |
-
def remove_header_information(self, text):
|
| 153 |
-
"""Remove header information from the report text"""
|
| 154 |
-
# Store the original text
|
| 155 |
-
self.original_report_data = text
|
| 156 |
|
| 157 |
-
#
|
| 158 |
-
|
|
|
|
| 159 |
|
| 160 |
-
#
|
| 161 |
-
|
| 162 |
-
r'(Name\s*:)',
|
| 163 |
-
r'(Patient\s*Name\s*:)',
|
| 164 |
-
r'(DOB|Date of Birth\s*:)',
|
| 165 |
-
r'(Age\s*:)',
|
| 166 |
-
r'(Gender\s*:)',
|
| 167 |
-
r'(Lab No\.|Laboratory Number\s*:)',
|
| 168 |
-
r'(Patient ID\s*:)',
|
| 169 |
-
r'(Report Status\s*:)',
|
| 170 |
-
r'(Ref By|Referred By\s*:)',
|
| 171 |
-
r'(Collected\s*:)',
|
| 172 |
-
r'(Reported\s*:)',
|
| 173 |
-
r'(A/c Status\s*:)',
|
| 174 |
-
r'(Processed at\s*:)',
|
| 175 |
-
r'(Collected at\s*:)',
|
| 176 |
-
r'(Address\s*:)',
|
| 177 |
-
r'(Phone|Mobile|Mob\s*:)',
|
| 178 |
-
]
|
| 179 |
|
| 180 |
-
|
| 181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
-
#
|
| 184 |
-
|
| 185 |
-
for i, line in enumerate(lines):
|
| 186 |
-
if re.search(r'(Test\s*Report|Test\s*Name|Test\s*Results|Results|HEMOGRAM|ROUTINE|EXAMINATION)', line, re.IGNORECASE):
|
| 187 |
-
test_results_start = i
|
| 188 |
-
break
|
| 189 |
|
| 190 |
-
#
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
if re.search(r'(Hemoglobin|Blood|Urine|CBC|Glucose|Cholesterol|Protein|RBC|WBC)', line, re.IGNORECASE):
|
| 195 |
-
test_results_start = max(0, i-3) # Start a few lines before the first test result
|
| 196 |
-
break
|
| 197 |
|
| 198 |
-
#
|
| 199 |
-
|
| 200 |
-
if test_results_start == -1:
|
| 201 |
-
# Count lines with patient identifiable information
|
| 202 |
-
header_count = 0
|
| 203 |
-
for i, line in enumerate(lines):
|
| 204 |
-
if re.search(combined_pattern, line, re.IGNORECASE):
|
| 205 |
-
header_count += 1
|
| 206 |
-
|
| 207 |
-
# If we found several header lines, skip those plus a few more
|
| 208 |
-
if header_count > 0:
|
| 209 |
-
test_results_start = min(header_count + 5, len(lines) // 3)
|
| 210 |
-
else:
|
| 211 |
-
# If no clear header pattern was found, just skip the first 10% of lines as a fallback
|
| 212 |
-
test_results_start = max(1, len(lines) // 10)
|
| 213 |
-
|
| 214 |
-
# Return text from the determined start point
|
| 215 |
-
clean_text = '\n'.join(lines[test_results_start:])
|
| 216 |
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
filtered_lines = []
|
| 222 |
-
for line in lines:
|
| 223 |
-
if not re.search(combined_pattern, line, re.IGNORECASE):
|
| 224 |
-
filtered_lines.append(line)
|
| 225 |
-
clean_text = '\n'.join(filtered_lines)
|
| 226 |
-
|
| 227 |
-
return clean_text
|
| 228 |
-
|
| 229 |
-
def extract_text_from_pdf_pymupdf(self, pdf_path):
|
| 230 |
-
"""Extract text from PDF using PyMuPDF (more robust than PyPDF)"""
|
| 231 |
-
text = ""
|
| 232 |
-
try:
|
| 233 |
-
doc = fitz.open(pdf_path)
|
| 234 |
-
for page in doc:
|
| 235 |
-
text += page.get_text()
|
| 236 |
-
doc.close()
|
| 237 |
-
return text
|
| 238 |
-
except Exception as e:
|
| 239 |
-
print(f"PyMuPDF extraction error: {str(e)}")
|
| 240 |
-
return None
|
| 241 |
-
|
| 242 |
-
def extract_text_from_pdf_pypdf(self, pdf_path):
|
| 243 |
-
"""Extract text using PyPDF as a backup method"""
|
| 244 |
-
try:
|
| 245 |
-
loader = PyPDFLoader(pdf_path)
|
| 246 |
-
pages = loader.load()
|
| 247 |
-
return "\n".join([page.page_content for page in pages])
|
| 248 |
-
except Exception as e:
|
| 249 |
-
print(f"PyPDF extraction error: {str(e)}")
|
| 250 |
-
return None
|
| 251 |
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
temp_file_path = os.path.join(temp_dir, "user_report.pdf")
|
| 262 |
-
|
| 263 |
-
# Handle file based on its type
|
| 264 |
-
try:
|
| 265 |
-
if isinstance(report_file, str): # If it's a file path
|
| 266 |
-
shutil.copy(report_file, temp_file_path)
|
| 267 |
-
elif hasattr(report_file, 'name'): # Gradio file object
|
| 268 |
-
with open(temp_file_path, 'wb') as f:
|
| 269 |
-
with open(report_file.name, 'rb') as source:
|
| 270 |
-
f.write(source.read())
|
| 271 |
-
else: # Try to handle as bytes or file-like object
|
| 272 |
-
with open(temp_file_path, 'wb') as f:
|
| 273 |
-
f.write(report_file.read() if hasattr(report_file, 'read') else report_file)
|
| 274 |
-
except Exception as e:
|
| 275 |
-
print(f"Error saving file: {str(e)}")
|
| 276 |
-
return f"Error saving the uploaded file: {str(e)}"
|
| 277 |
-
|
| 278 |
-
# Try multiple methods to extract text from the PDF
|
| 279 |
-
text = None
|
| 280 |
-
|
| 281 |
-
# Method 1: PyMuPDF
|
| 282 |
-
text = self.extract_text_from_pdf_pymupdf(temp_file_path)
|
| 283 |
-
|
| 284 |
-
# Method 2: PyPDF as fallback
|
| 285 |
-
if not text:
|
| 286 |
-
text = self.extract_text_from_pdf_pypdf(temp_file_path)
|
| 287 |
-
|
| 288 |
-
# Method 3: Last resort - try to read as raw text
|
| 289 |
-
if not text:
|
| 290 |
-
try:
|
| 291 |
-
with open(temp_file_path, 'r', errors='ignore') as f:
|
| 292 |
-
text = f.read()
|
| 293 |
-
except Exception as e:
|
| 294 |
-
print(f"Raw text reading error: {str(e)}")
|
| 295 |
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
# Split into chunks if needed
|
| 305 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
| 306 |
-
chunk_size=1000,
|
| 307 |
-
chunk_overlap=200,
|
| 308 |
-
length_function=len
|
| 309 |
-
)
|
| 310 |
-
chunks = text_splitter.split_text(cleaned_text)
|
| 311 |
-
|
| 312 |
-
# Check if too much text was removed
|
| 313 |
-
original_length = len(text.strip())
|
| 314 |
-
cleaned_length = len(cleaned_text.strip())
|
| 315 |
-
removal_percentage = (original_length - cleaned_length) / original_length * 100
|
| 316 |
-
|
| 317 |
-
if removal_percentage > 80:
|
| 318 |
-
return f"Report processed successfully, but significant content may have been filtered. Original length: {original_length} chars. Cleaned length: {cleaned_length} chars. Extracted approximately {len(chunks)} text chunks."
|
| 319 |
-
else:
|
| 320 |
-
return f"Report processed successfully. Removed approximately {removal_percentage:.1f}% of header content. Extracted {len(chunks)} text chunks."
|
| 321 |
-
else:
|
| 322 |
-
self.user_report_data = "Unable to extract text from the provided PDF. This is an empty report placeholder."
|
| 323 |
-
return "Warning: Could not extract text from the PDF. The file may be corrupted, password-protected, or contain only images. Processing will continue with limited data."
|
| 324 |
-
|
| 325 |
-
finally:
|
| 326 |
-
# Clean up the temporary directory and file
|
| 327 |
-
shutil.rmtree(temp_dir)
|
| 328 |
-
|
| 329 |
-
def answer_question(self, question):
|
| 330 |
-
"""Answer a question based on the uploaded report and knowledge base"""
|
| 331 |
-
if not self.user_report_data or self.user_report_data == "No report data available.":
|
| 332 |
-
return "No report has been processed or text extraction failed. Please upload a medical report first."
|
| 333 |
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
r'(patient|name|age|gender|birth|dob|address|phone|contact|id|identification)',
|
| 337 |
-
r'(doctor|physician|referring|referred by)',
|
| 338 |
-
r'(date|time|collected|processed|reported)',
|
| 339 |
-
r'(lab|laboratory|number|id)'
|
| 340 |
-
]
|
| 341 |
|
| 342 |
-
|
| 343 |
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
# If it's a direct question about patient identity, don't answer
|
| 359 |
-
if re.search(specific_id_pattern, question, re.IGNORECASE):
|
| 360 |
-
return "I'm unable to provide specific patient identification information. This feature is disabled to protect patient privacy. Please ask about medical test results or interpretations instead."
|
| 361 |
|
| 362 |
-
# Try using the QA chain with proper error handling
|
| 363 |
try:
|
| 364 |
-
#
|
| 365 |
-
response =
|
| 366 |
|
| 367 |
-
#
|
| 368 |
-
|
| 369 |
-
# Get the raw result
|
| 370 |
-
result = response["result"]
|
| 371 |
-
|
| 372 |
-
# Process like in the chatbot code - remove duplicates
|
| 373 |
-
sentences = [s.strip() for s in result.split('.') if s.strip()]
|
| 374 |
-
unique_sentences = list(OrderedDict.fromkeys(sentences))
|
| 375 |
-
cleaned_result = '. '.join(unique_sentences)
|
| 376 |
-
|
| 377 |
-
# Add period if needed
|
| 378 |
-
if cleaned_result and not cleaned_result.endswith('.'):
|
| 379 |
-
cleaned_result += '.'
|
| 380 |
-
|
| 381 |
-
return cleaned_result
|
| 382 |
-
else:
|
| 383 |
-
return str(response)
|
| 384 |
-
|
| 385 |
-
except Exception as e:
|
| 386 |
-
print(f"Error in QA chain: {str(e)}")
|
| 387 |
-
# Log details about the error for debugging
|
| 388 |
-
print(f"QA chain type: {type(self.qa_chain).__name__}")
|
| 389 |
|
| 390 |
-
#
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
# CORS support for frontend testing
|
| 416 |
-
app.add_middleware(
|
| 417 |
-
CORSMiddleware,
|
| 418 |
-
allow_origins=["*"],
|
| 419 |
-
allow_credentials=True,
|
| 420 |
-
allow_methods=["*"],
|
| 421 |
-
allow_headers=["*"],
|
| 422 |
-
)
|
| 423 |
-
|
| 424 |
-
@app.post("/process_user_report")
|
| 425 |
-
async def process_user_report(report_file: UploadFile = File(...)):
|
| 426 |
-
try:
|
| 427 |
-
temp_dir = tempfile.mkdtemp()
|
| 428 |
-
temp_file_path = os.path.join(temp_dir, report_file.filename)
|
| 429 |
-
|
| 430 |
-
with open(temp_file_path, "wb") as f:
|
| 431 |
-
shutil.copyfileobj(report_file.file, f)
|
| 432 |
-
|
| 433 |
-
result = analyzer.process_user_report(temp_file_path)
|
| 434 |
-
return {"status": "success", "message": result}
|
| 435 |
-
|
| 436 |
-
except Exception as e:
|
| 437 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 438 |
-
finally:
|
| 439 |
-
report_file.file.close()
|
| 440 |
-
shutil.rmtree(temp_dir, ignore_errors=True)
|
| 441 |
-
|
| 442 |
-
@app.post("/answer_question")
|
| 443 |
-
async def answer_question(request: Request):
|
| 444 |
-
try:
|
| 445 |
-
data = await request.json()
|
| 446 |
-
question = data.get("question", "").strip()
|
| 447 |
-
|
| 448 |
-
if not question:
|
| 449 |
-
raise HTTPException(status_code=400, detail="Question is required")
|
| 450 |
-
|
| 451 |
-
answer = analyzer.answer_question(question)
|
| 452 |
-
return {"status": "success", "answer": answer}
|
| 453 |
|
| 454 |
-
|
| 455 |
-
|
| 456 |
|
| 457 |
-
#
|
| 458 |
if __name__ == "__main__":
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
gr.Markdown("Upload your medical report and ask questions about it. The system will analyze your report and provide answers based on medical knowledge.")
|
| 462 |
-
|
| 463 |
-
with gr.Row():
|
| 464 |
-
with gr.Column(scale=1):
|
| 465 |
-
report_file = gr.File(label="Upload Medical Report (PDF)")
|
| 466 |
-
upload_button = gr.Button("Process Report")
|
| 467 |
-
upload_output = gr.Textbox(label="Processing Status")
|
| 468 |
-
|
| 469 |
-
with gr.Column(scale=2):
|
| 470 |
-
question_input = gr.Textbox(label="Ask a question about your report")
|
| 471 |
-
answer_button = gr.Button("Get Answer")
|
| 472 |
-
answer_output = gr.Textbox(label="Answer")
|
| 473 |
-
|
| 474 |
-
upload_button.click(fn=analyzer.process_user_report, inputs=[report_file], outputs=[upload_output])
|
| 475 |
-
answer_button.click(fn=analyzer.answer_question, inputs=[question_input], outputs=[answer_output])
|
| 476 |
-
|
| 477 |
-
demo.launch(
|
| 478 |
-
share=True,
|
| 479 |
-
favicon_path="favicon.ico" if os.path.exists("favicon.ico") else None,
|
| 480 |
-
server_name="0.0.0.0",
|
| 481 |
-
server_port=7860
|
| 482 |
-
)
|
|
|
|
| 1 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
+
import requests
|
| 4 |
+
import tempfile
|
| 5 |
+
from fastapi import FastAPI, HTTPException, Request
|
| 6 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 7 |
+
from pydantic import BaseModel
|
| 8 |
+
from langchain_community.vectorstores import FAISS
|
| 9 |
from langchain_huggingface import HuggingFaceEmbeddings, HuggingFaceEndpoint
|
| 10 |
+
from langchain.chains import RetrievalQA
|
| 11 |
+
from langchain_core.prompts import PromptTemplate
|
| 12 |
+
from langchain_community.document_loaders import PyPDFLoader
|
| 13 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
|
| 14 |
from collections import OrderedDict
|
|
|
|
| 15 |
|
| 16 |
+
# Retrieve HF_TOKEN from environment
|
| 17 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
|
|
| 18 |
|
| 19 |
# Constants
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
CACHE_DIR = "/tmp/models_cache"
|
| 21 |
+
DB_FAISS_PATH = "/tmp/vectorstore/db_faiss"
|
| 22 |
+
USER_REPORT_DB_PATH = "/tmp/vectorstore/user_report_db"
|
| 23 |
+
HUGGINGFACE_REPO_ID = "microsoft/Phi-3-mini-4k-instruct"
|
| 24 |
|
| 25 |
+
# Create directories
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
os.makedirs(CACHE_DIR, exist_ok=True)
|
| 27 |
+
os.makedirs(os.path.dirname(DB_FAISS_PATH), exist_ok=True)
|
| 28 |
+
os.makedirs(os.path.dirname(USER_REPORT_DB_PATH), exist_ok=True)
|
| 29 |
|
| 30 |
+
# Initialize FastAPI app
|
| 31 |
+
app = FastAPI()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
+
# Add CORS middleware
|
| 34 |
+
app.add_middleware(
|
| 35 |
+
CORSMiddleware,
|
| 36 |
+
allow_origins=["*"],
|
| 37 |
+
allow_credentials=True,
|
| 38 |
+
allow_methods=["*"],
|
| 39 |
+
allow_headers=["*"],
|
| 40 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
+
# Load the embedding model
|
| 43 |
+
embedding_model = HuggingFaceEmbeddings(
|
| 44 |
+
model_name="rishi002/all-MiniLM-L6-v2",
|
| 45 |
+
cache_folder=CACHE_DIR
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
# Global variables to track report status and database
|
| 49 |
+
user_report_processed = False
|
| 50 |
+
user_report_db = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
+
# Load LLM
|
| 53 |
+
def load_llm():
|
| 54 |
+
return HuggingFaceEndpoint(
|
| 55 |
+
repo_id=HUGGINGFACE_REPO_ID,
|
| 56 |
+
task="text-generation",
|
| 57 |
+
temperature=0.5,
|
| 58 |
+
model_kwargs={"token": HF_TOKEN, "max_length": 512}
|
| 59 |
+
)
|
| 60 |
|
| 61 |
+
# Custom prompt template for medical report analysis
|
| 62 |
+
MEDICAL_REPORT_PROMPT = """
|
| 63 |
+
You are a helpful medical assistant analyzing a patient's medical report.
|
| 64 |
+
Use only the information provided in the context to answer the user's question.
|
| 65 |
+
If you don't know the answer based on the given context, simply state that you don't have enough information.
|
| 66 |
+
Don't make up any medical information or conclusions not supported by the report.
|
| 67 |
+
Provide concise, clear explanations in simple language that a patient can understand.
|
| 68 |
+
Avoid using complex medical terminology unless necessary, and if used, briefly explain what it means.
|
| 69 |
+
Keep your answer concise and focused on the question asked.
|
| 70 |
|
| 71 |
+
Context: {context}
|
| 72 |
+
Question: {question}
|
| 73 |
|
| 74 |
+
Start the answer directly without repeating the question.
|
| 75 |
+
"""
|
| 76 |
+
|
| 77 |
+
# Function to download and process PDF from URL
|
| 78 |
+
def process_pdf_from_url(pdf_url):
|
| 79 |
+
try:
|
| 80 |
+
# Download the PDF from the URL
|
| 81 |
+
response = requests.get(pdf_url)
|
| 82 |
+
response.raise_for_status() # Raise exception for bad status codes
|
| 83 |
|
| 84 |
+
# Create a temporary file to save the PDF
|
| 85 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as temp_pdf:
|
| 86 |
+
temp_pdf.write(response.content)
|
| 87 |
+
temp_path = temp_pdf.name
|
|
|
|
| 88 |
|
| 89 |
+
# Load the PDF
|
| 90 |
+
loader = PyPDFLoader(temp_path)
|
| 91 |
+
documents = loader.load()
|
| 92 |
|
| 93 |
+
# Split documents into chunks
|
| 94 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
| 95 |
+
chunk_size=1000,
|
| 96 |
+
chunk_overlap=200
|
|
|
|
|
|
|
|
|
|
| 97 |
)
|
| 98 |
+
text_chunks = text_splitter.split_documents(documents)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
+
# Create vector database from the text chunks
|
| 101 |
+
db = FAISS.from_documents(text_chunks, embedding_model)
|
| 102 |
+
db.save_local(USER_REPORT_DB_PATH)
|
| 103 |
|
| 104 |
+
# Clean up the temporary file
|
| 105 |
+
os.unlink(temp_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
+
return True
|
| 108 |
+
|
| 109 |
+
except Exception as e:
|
| 110 |
+
print(f"Error processing PDF: {str(e)}")
|
| 111 |
+
return False
|
| 112 |
+
|
| 113 |
+
# Create QA chain for user report
|
| 114 |
+
def create_user_report_qa_chain():
|
| 115 |
+
if not os.path.exists(USER_REPORT_DB_PATH):
|
| 116 |
+
return None
|
| 117 |
+
|
| 118 |
+
db = FAISS.load_local(USER_REPORT_DB_PATH, embedding_model, allow_dangerous_deserialization=True)
|
| 119 |
+
|
| 120 |
+
prompt = PromptTemplate(template=MEDICAL_REPORT_PROMPT, input_variables=["context", "question"])
|
| 121 |
+
|
| 122 |
+
return RetrievalQA.from_chain_type(
|
| 123 |
+
llm=load_llm(),
|
| 124 |
+
chain_type="stuff",
|
| 125 |
+
retriever=db.as_retriever(search_kwargs={'k': 3}),
|
| 126 |
+
return_source_documents=False,
|
| 127 |
+
chain_type_kwargs={'prompt': prompt}
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
# API Models
|
| 131 |
+
class ReportURL(BaseModel):
|
| 132 |
+
url: str
|
| 133 |
+
|
| 134 |
+
class Question(BaseModel):
|
| 135 |
+
query: str
|
| 136 |
+
|
| 137 |
+
# Combined API endpoint to process a PDF report from a URL and return status
|
| 138 |
+
@app.post("/api/process-report")
|
| 139 |
+
async def process_report(report_data: ReportURL):
|
| 140 |
+
global user_report_processed, user_report_db
|
| 141 |
+
|
| 142 |
+
# Process the PDF from the URL
|
| 143 |
+
success = process_pdf_from_url(report_data.url)
|
| 144 |
+
|
| 145 |
+
if success:
|
| 146 |
+
user_report_processed = True
|
| 147 |
+
user_report_db = create_user_report_qa_chain()
|
| 148 |
+
return {
|
| 149 |
+
"status": "success",
|
| 150 |
+
"message": "Medical report data extracted successfully",
|
| 151 |
+
"processed": True
|
| 152 |
+
}
|
| 153 |
+
else:
|
| 154 |
+
user_report_processed = False
|
| 155 |
+
return {
|
| 156 |
+
"status": "error",
|
| 157 |
+
"message": "Failed to process the medical report",
|
| 158 |
+
"processed": False
|
| 159 |
+
}
|
| 160 |
+
|
| 161 |
+
# API endpoint to ask questions about the processed report
|
| 162 |
+
@app.post("/api/ask-question")
|
| 163 |
+
async def ask_question(question_data: Question):
|
| 164 |
+
global user_report_db, user_report_processed
|
| 165 |
+
|
| 166 |
+
if not user_report_processed or user_report_db is None:
|
| 167 |
+
raise HTTPException(status_code=400, detail="No medical report has been processed yet")
|
| 168 |
+
|
| 169 |
+
try:
|
| 170 |
+
# Get answer from the QA chain
|
| 171 |
+
response = user_report_db.invoke({'query': question_data.query})
|
| 172 |
|
| 173 |
+
# Get the raw result
|
| 174 |
+
result = response["result"]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
|
| 176 |
+
# Remove duplicates by splitting into sentences and keeping only unique ones
|
| 177 |
+
sentences = [s.strip() for s in result.split('.') if s.strip()]
|
| 178 |
+
# Use OrderedDict to preserve order while removing duplicates
|
| 179 |
+
unique_sentences = list(OrderedDict.fromkeys(sentences))
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
+
# Rejoin with periods
|
| 182 |
+
cleaned_result = '. '.join(unique_sentences) + '.' if unique_sentences else ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
|
| 184 |
+
return {"answer": cleaned_result}
|
| 185 |
+
|
| 186 |
+
except Exception as e:
|
| 187 |
+
raise HTTPException(status_code=500, detail=f"Error processing question: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
|
| 189 |
+
# Gradio Interface
|
| 190 |
+
with gr.Blocks() as iface:
|
| 191 |
+
gr.Markdown("# Medical Report Analysis")
|
| 192 |
+
|
| 193 |
+
with gr.Row():
|
| 194 |
+
with gr.Column():
|
| 195 |
+
pdf_url_input = gr.Textbox(label="Enter PDF Report URL")
|
| 196 |
+
process_button = gr.Button("Analyze Report")
|
| 197 |
+
status_text = gr.Textbox(label="Status", interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
|
| 199 |
+
with gr.Row():
|
| 200 |
+
with gr.Column():
|
| 201 |
+
query_input = gr.Textbox(label="Ask a question about your report")
|
| 202 |
+
query_button = gr.Button("Submit Question")
|
| 203 |
+
answer_output = gr.Textbox(label="Answer", interactive=False)
|
| 204 |
+
|
| 205 |
+
def process_report_gradio(url):
|
| 206 |
+
global user_report_processed, user_report_db
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
|
| 208 |
+
if not url:
|
| 209 |
+
return "Please enter a valid URL"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
|
| 211 |
+
success = process_pdf_from_url(url)
|
| 212 |
|
| 213 |
+
if success:
|
| 214 |
+
user_report_processed = True
|
| 215 |
+
user_report_db = create_user_report_qa_chain()
|
| 216 |
+
return "Medical report data extracted successfully. You can now ask questions about your report."
|
| 217 |
+
else:
|
| 218 |
+
user_report_processed = False
|
| 219 |
+
return "Failed to process the medical report. Please check the URL and try again."
|
| 220 |
+
|
| 221 |
+
def ask_question_gradio(query):
|
| 222 |
+
global user_report_db, user_report_processed
|
| 223 |
+
|
| 224 |
+
if not user_report_processed or user_report_db is None:
|
| 225 |
+
return "No medical report has been processed yet. Please upload and analyze a report first."
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
|
|
|
|
| 227 |
try:
|
| 228 |
+
# Get answer from the QA chain
|
| 229 |
+
response = user_report_db.invoke({'query': query})
|
| 230 |
|
| 231 |
+
# Get the raw result
|
| 232 |
+
result = response["result"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
|
| 234 |
+
# Remove duplicates by splitting into sentences and keeping only unique ones
|
| 235 |
+
sentences = [s.strip() for s in result.split('.') if s.strip()]
|
| 236 |
+
# Use OrderedDict to preserve order while removing duplicates
|
| 237 |
+
unique_sentences = list(OrderedDict.fromkeys(sentences))
|
| 238 |
+
|
| 239 |
+
# Rejoin with periods
|
| 240 |
+
cleaned_result = '. '.join(unique_sentences) + '.' if unique_sentences else ""
|
| 241 |
+
|
| 242 |
+
return cleaned_result
|
| 243 |
+
|
| 244 |
+
except Exception as e:
|
| 245 |
+
return f"Error: {str(e)}"
|
| 246 |
+
|
| 247 |
+
process_button.click(
|
| 248 |
+
fn=process_report_gradio,
|
| 249 |
+
inputs=pdf_url_input,
|
| 250 |
+
outputs=status_text
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
query_button.click(
|
| 254 |
+
fn=ask_question_gradio,
|
| 255 |
+
inputs=query_input,
|
| 256 |
+
outputs=answer_output
|
| 257 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
|
| 259 |
+
# Mount the Gradio app to FastAPI
|
| 260 |
+
app = gr.mount_gradio_app(app, iface, path="/")
|
| 261 |
|
| 262 |
+
# Run the app with uvicorn
|
| 263 |
if __name__ == "__main__":
|
| 264 |
+
import uvicorn
|
| 265 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|