Spaces:
Sleeping
Sleeping
Update embeddings.py
Browse files- embeddings.py +16 -126
embeddings.py
CHANGED
|
@@ -3,161 +3,51 @@ from langchain_community.document_loaders import PyPDFLoader, DirectoryLoader
|
|
| 3 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 4 |
from langchain_huggingface import HuggingFaceEmbeddings
|
| 5 |
from langchain_community.vectorstores import FAISS
|
| 6 |
-
from langchain.chains import RetrievalQA
|
| 7 |
-
from langchain_core.prompts import PromptTemplate
|
| 8 |
-
from langchain.llms.base import LLM
|
| 9 |
-
from typing import Optional, List
|
| 10 |
-
import google.generativeai as genai
|
| 11 |
|
| 12 |
# Set Paths
|
| 13 |
DATA_PATH = "dataFolder/"
|
| 14 |
DB_FAISS_PATH = "/tmp/vectorstore/db_faiss"
|
| 15 |
|
| 16 |
-
# Google AI API setup
|
| 17 |
-
GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
|
| 18 |
-
if not GOOGLE_API_KEY:
|
| 19 |
-
raise ValueError("GOOGLE_API_KEY environment variable is required!")
|
| 20 |
-
|
| 21 |
-
genai.configure(api_key=GOOGLE_API_KEY)
|
| 22 |
-
|
| 23 |
-
# Custom Gemini LLM wrapper for LangChain
|
| 24 |
-
class GeminiLLM(LLM):
|
| 25 |
-
def __init__(self, model_name="gemini-2.0-flash"):
|
| 26 |
-
self.model = genai.GenerativeModel(model_name)
|
| 27 |
-
|
| 28 |
-
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
| 29 |
-
try:
|
| 30 |
-
response = self.model.generate_content(prompt)
|
| 31 |
-
return response.text
|
| 32 |
-
except Exception as e:
|
| 33 |
-
return f"Error generating response: {str(e)}"
|
| 34 |
-
|
| 35 |
-
@property
|
| 36 |
-
def _identifying_params(self):
|
| 37 |
-
return {"name": "gemini-flash"}
|
| 38 |
-
|
| 39 |
-
@property
|
| 40 |
-
def _llm_type(self):
|
| 41 |
-
return "gemini"
|
| 42 |
-
|
| 43 |
# Step 1: Load PDF Files
|
| 44 |
-
def load_pdf_files(data_path):
|
|
|
|
| 45 |
loader = DirectoryLoader(data_path, glob="*.pdf", loader_cls=PyPDFLoader)
|
| 46 |
documents = loader.load()
|
|
|
|
| 47 |
return documents
|
| 48 |
|
| 49 |
# Step 2: Create Chunks
|
| 50 |
def create_chunks(documents):
|
|
|
|
| 51 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
| 52 |
text_chunks = text_splitter.split_documents(documents)
|
|
|
|
| 53 |
return text_chunks
|
| 54 |
|
| 55 |
# Step 3: Generate Embeddings
|
| 56 |
def get_embedding_model():
|
|
|
|
| 57 |
CACHE_DIR = "/tmp/models_cache"
|
| 58 |
os.makedirs(CACHE_DIR, exist_ok=True)
|
| 59 |
|
| 60 |
embedding_model = HuggingFaceEmbeddings(
|
| 61 |
model_name="rishi002/all-MiniLM-L6-v2",
|
| 62 |
-
cache_folder=
|
| 63 |
)
|
|
|
|
| 64 |
return embedding_model
|
| 65 |
|
| 66 |
# Step 4: Store Embeddings in FAISS
|
| 67 |
-
def store_embeddings(text_chunks, embedding_model, db_path):
|
|
|
|
| 68 |
db = FAISS.from_documents(text_chunks, embedding_model)
|
| 69 |
db.save_local(db_path)
|
|
|
|
| 70 |
return db
|
| 71 |
|
| 72 |
# Step 5: Load FAISS Database
|
| 73 |
-
def load_faiss_db(db_path, embedding_model):
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
return GeminiLLM()
|
| 79 |
-
|
| 80 |
-
# Step 7: Set Custom Prompt with Health Profile
|
| 81 |
-
CUSTOM_PROMPT_TEMPLATE = """
|
| 82 |
-
Use the provided context to answer the user's question.
|
| 83 |
-
If the answer is unknown, say you don't know. Do not make up information.
|
| 84 |
-
Only respond based on the context.
|
| 85 |
-
|
| 86 |
-
Context: {context}
|
| 87 |
-
User Health Profile: {health_info}
|
| 88 |
-
Question: {question}
|
| 89 |
-
|
| 90 |
-
Start your answer directly.
|
| 91 |
-
"""
|
| 92 |
-
|
| 93 |
-
def set_custom_prompt(template):
|
| 94 |
-
return PromptTemplate(template=template, input_variables=["context", "question", "health_info"])
|
| 95 |
-
|
| 96 |
-
# Step 8: Create Retrieval QA Chain
|
| 97 |
-
def create_qa_chain(llm, db):
|
| 98 |
-
return RetrievalQA.from_chain_type(
|
| 99 |
-
llm=llm,
|
| 100 |
-
chain_type="stuff",
|
| 101 |
-
retriever=db.as_retriever(search_kwargs={"k": 3}),
|
| 102 |
-
return_source_documents=False,
|
| 103 |
-
chain_type_kwargs={"prompt": set_custom_prompt(CUSTOM_PROMPT_TEMPLATE)}
|
| 104 |
-
)
|
| 105 |
-
|
| 106 |
-
# Function to get user health profile via API (placeholder)
|
| 107 |
-
def get_user_health_profile():
|
| 108 |
-
"""
|
| 109 |
-
This function should make an API call to get the user's health profile.
|
| 110 |
-
Replace this placeholder with your actual API implementation.
|
| 111 |
-
"""
|
| 112 |
-
try:
|
| 113 |
-
# Placeholder - replace with your actual API call
|
| 114 |
-
return "No health profile available"
|
| 115 |
-
except Exception as e:
|
| 116 |
-
print(f"Error fetching health profile: {e}")
|
| 117 |
-
return "Health profile unavailable"
|
| 118 |
-
|
| 119 |
-
# Create and load all models and FAISS (for Gradio)
|
| 120 |
-
def prepare_qa_system():
|
| 121 |
-
# Load and process PDFs, create FAISS index, etc.
|
| 122 |
-
print("π Loading PDFs...")
|
| 123 |
-
documents = load_pdf_files(DATA_PATH)
|
| 124 |
-
|
| 125 |
-
print("π Creating Chunks...")
|
| 126 |
-
text_chunks = create_chunks(documents)
|
| 127 |
-
|
| 128 |
-
print("π§ Generating Embeddings...")
|
| 129 |
-
embedding_model = get_embedding_model()
|
| 130 |
-
|
| 131 |
-
print("πΎ Storing in FAISS...")
|
| 132 |
-
db = store_embeddings(text_chunks, embedding_model, DB_FAISS_PATH)
|
| 133 |
-
|
| 134 |
-
print("π Loading FAISS Database...")
|
| 135 |
-
db = load_faiss_db(DB_FAISS_PATH, embedding_model)
|
| 136 |
-
|
| 137 |
-
print("π€ Loading Gemini LLM...")
|
| 138 |
-
llm = load_llm()
|
| 139 |
-
|
| 140 |
-
print("π Creating QA Chain...")
|
| 141 |
-
qa_chain = create_qa_chain(llm, db)
|
| 142 |
-
|
| 143 |
-
return qa_chain
|
| 144 |
-
|
| 145 |
-
# Create the QA system and get the chain ready
|
| 146 |
-
qa_chain = prepare_qa_system()
|
| 147 |
-
|
| 148 |
-
# Gradio Interface function
|
| 149 |
-
def ask_question(query: str):
|
| 150 |
-
try:
|
| 151 |
-
# Get user's health profile via API
|
| 152 |
-
health_info = get_user_health_profile()
|
| 153 |
-
|
| 154 |
-
# Prepare inputs for the QA chain
|
| 155 |
-
qa_inputs = {
|
| 156 |
-
'query': query,
|
| 157 |
-
'health_info': health_info
|
| 158 |
-
}
|
| 159 |
-
|
| 160 |
-
response = qa_chain.invoke(qa_inputs)
|
| 161 |
-
return response["result"], []
|
| 162 |
-
except Exception as e:
|
| 163 |
-
return f"Error: {str(e)}", []
|
|
|
|
| 3 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 4 |
from langchain_huggingface import HuggingFaceEmbeddings
|
| 5 |
from langchain_community.vectorstores import FAISS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
# Set Paths
|
| 8 |
DATA_PATH = "dataFolder/"
|
| 9 |
DB_FAISS_PATH = "/tmp/vectorstore/db_faiss"
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
# Step 1: Load PDF Files
|
| 12 |
+
def load_pdf_files(data_path=DATA_PATH):
|
| 13 |
+
print("π Loading PDFs from:", data_path)
|
| 14 |
loader = DirectoryLoader(data_path, glob="*.pdf", loader_cls=PyPDFLoader)
|
| 15 |
documents = loader.load()
|
| 16 |
+
print(f"β
Loaded {len(documents)} document(s).")
|
| 17 |
return documents
|
| 18 |
|
| 19 |
# Step 2: Create Chunks
|
| 20 |
def create_chunks(documents):
|
| 21 |
+
print("π Creating text chunks...")
|
| 22 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
| 23 |
text_chunks = text_splitter.split_documents(documents)
|
| 24 |
+
print(f"β
Created {len(text_chunks)} chunk(s).")
|
| 25 |
return text_chunks
|
| 26 |
|
| 27 |
# Step 3: Generate Embeddings
|
| 28 |
def get_embedding_model():
|
| 29 |
+
print("π§ Loading embedding model...")
|
| 30 |
CACHE_DIR = "/tmp/models_cache"
|
| 31 |
os.makedirs(CACHE_DIR, exist_ok=True)
|
| 32 |
|
| 33 |
embedding_model = HuggingFaceEmbeddings(
|
| 34 |
model_name="rishi002/all-MiniLM-L6-v2",
|
| 35 |
+
cache_folder=CACHE_DIR
|
| 36 |
)
|
| 37 |
+
print("β
Embedding model loaded.")
|
| 38 |
return embedding_model
|
| 39 |
|
| 40 |
# Step 4: Store Embeddings in FAISS
|
| 41 |
+
def store_embeddings(text_chunks, embedding_model, db_path=DB_FAISS_PATH):
|
| 42 |
+
print("πΎ Storing embeddings in FAISS...")
|
| 43 |
db = FAISS.from_documents(text_chunks, embedding_model)
|
| 44 |
db.save_local(db_path)
|
| 45 |
+
print(f"β
FAISS index saved to: {db_path}")
|
| 46 |
return db
|
| 47 |
|
| 48 |
# Step 5: Load FAISS Database
|
| 49 |
+
def load_faiss_db(db_path=DB_FAISS_PATH, embedding_model=None):
|
| 50 |
+
print("π¦ Loading FAISS database from:", db_path)
|
| 51 |
+
db = FAISS.load_local(db_path, embedding_model, allow_dangerous_deserialization=True)
|
| 52 |
+
print("β
FAISS database loaded.")
|
| 53 |
+
return db
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|