Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,60 +1,64 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
3 |
import faiss
|
4 |
-
import numpy as np
|
5 |
import torch
|
6 |
from PyPDF2 import PdfReader
|
7 |
|
8 |
-
#
|
9 |
-
def
|
10 |
-
|
11 |
-
text =
|
12 |
-
for page_num in range(len(
|
13 |
-
|
14 |
-
text += page.extract_text()
|
15 |
return text
|
16 |
|
17 |
-
#
|
18 |
-
def
|
19 |
-
|
20 |
-
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-mpnet-base-v2")
|
21 |
-
model = AutoModel.from_pretrained("sentence-transformers/all-mpnet-base-v2")
|
22 |
-
|
23 |
-
# Tokenize and embed text
|
24 |
-
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
25 |
-
with torch.no_grad():
|
26 |
-
outputs = model(**inputs)
|
27 |
-
embeddings = outputs.last_hidden_state.mean(dim=1) # Mean pooling to get the embedding
|
28 |
-
return embeddings.squeeze().numpy()
|
29 |
-
|
30 |
-
# Initialize FAISS index
|
31 |
-
def initialize_faiss(embedding_size):
|
32 |
-
index = faiss.IndexFlatL2(embedding_size)
|
33 |
-
return index
|
34 |
|
35 |
-
#
|
36 |
-
def
|
37 |
-
|
|
|
|
|
38 |
|
39 |
-
#
|
40 |
-
def
|
41 |
-
|
42 |
-
|
|
|
|
|
43 |
|
44 |
-
#
|
45 |
-
def process_document(
|
46 |
-
text
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
#
|
54 |
-
def query_document(query, faiss_index, document_chunks):
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
# Gradio interface
|
60 |
def chatbot_interface():
|
@@ -64,7 +68,7 @@ def chatbot_interface():
|
|
64 |
# Function to handle document upload
|
65 |
def upload_file(file):
|
66 |
nonlocal faiss_index, document_chunks
|
67 |
-
faiss_index, document_chunks = process_document(file)
|
68 |
return "Document uploaded and indexed. You can now ask questions."
|
69 |
|
70 |
# Function to handle user queries
|
@@ -76,7 +80,7 @@ def chatbot_interface():
|
|
76 |
# Gradio UI
|
77 |
upload = gr.File(label="Upload a PDF document")
|
78 |
question = gr.Textbox(label="Ask a question about the document")
|
79 |
-
answer = gr.Textbox(label="Answer",
|
80 |
|
81 |
# Gradio app layout
|
82 |
with gr.Blocks() as demo:
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
+
from transformers import pipeline
|
4 |
import faiss
|
|
|
5 |
import torch
|
6 |
from PyPDF2 import PdfReader
|
7 |
|
8 |
+
# Function to extract text from a PDF file
|
9 |
+
def extract_text_from_pdf(pdf_file):
|
10 |
+
pdf_reader = PdfReader(pdf_file)
|
11 |
+
text = ""
|
12 |
+
for page_num in range(len(pdf_reader.pages)):
|
13 |
+
text += pdf_reader.pages[page_num].extract_text()
|
|
|
14 |
return text
|
15 |
|
16 |
+
# Function to split text into chunks
|
17 |
+
def split_text_into_chunks(text, chunk_size=500):
|
18 |
+
return [text[i:i + chunk_size] for i in range(0, len(text), chunk_size)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
# Function to embed text chunks using a pre-trained model
|
21 |
+
def embed_text_chunks(text_chunks, model_name="sentence-transformers/all-MiniLM-L6-v2"):
|
22 |
+
embedder = pipeline("feature-extraction", model=model_name)
|
23 |
+
embeddings = [embedder(chunk)[0][0] for chunk in text_chunks]
|
24 |
+
return torch.tensor(embeddings)
|
25 |
|
26 |
+
# Function to build FAISS index for document chunks
|
27 |
+
def build_faiss_index(embeddings):
|
28 |
+
d = embeddings.shape[1] # Dimension of embeddings
|
29 |
+
index = faiss.IndexFlatL2(d)
|
30 |
+
index.add(embeddings.numpy())
|
31 |
+
return index
|
32 |
|
33 |
+
# Function to process uploaded document
|
34 |
+
def process_document(pdf_file):
|
35 |
+
# Extract text from the PDF
|
36 |
+
text = extract_text_from_pdf(pdf_file)
|
37 |
+
|
38 |
+
# Split text into chunks
|
39 |
+
document_chunks = split_text_into_chunks(text)
|
40 |
+
|
41 |
+
# Embed document chunks
|
42 |
+
embeddings = embed_text_chunks(document_chunks)
|
43 |
+
|
44 |
+
# Build FAISS index
|
45 |
+
faiss_index = build_faiss_index(embeddings)
|
46 |
+
|
47 |
+
return faiss_index, document_chunks
|
48 |
|
49 |
+
# Function to query the FAISS index for a question
|
50 |
+
def query_document(query, faiss_index, document_chunks, model_name="sentence-transformers/all-MiniLM-L6-v2"):
|
51 |
+
embedder = pipeline("feature-extraction", model=model_name)
|
52 |
+
|
53 |
+
# Embed the query
|
54 |
+
query_embedding = embedder(query)[0][0]
|
55 |
+
query_embedding = torch.tensor(query_embedding).unsqueeze(0).numpy()
|
56 |
+
|
57 |
+
# Search the FAISS index
|
58 |
+
_, I = faiss_index.search(query_embedding, k=1)
|
59 |
+
|
60 |
+
# Get the most relevant chunk
|
61 |
+
return document_chunks[I[0][0]]
|
62 |
|
63 |
# Gradio interface
|
64 |
def chatbot_interface():
|
|
|
68 |
# Function to handle document upload
|
69 |
def upload_file(file):
|
70 |
nonlocal faiss_index, document_chunks
|
71 |
+
faiss_index, document_chunks = process_document(file.name)
|
72 |
return "Document uploaded and indexed. You can now ask questions."
|
73 |
|
74 |
# Function to handle user queries
|
|
|
80 |
# Gradio UI
|
81 |
upload = gr.File(label="Upload a PDF document")
|
82 |
question = gr.Textbox(label="Ask a question about the document")
|
83 |
+
answer = gr.Textbox(label="Answer", interactive=False) # Updated to interactive=False
|
84 |
|
85 |
# Gradio app layout
|
86 |
with gr.Blocks() as demo:
|